Self Studies

Lines and Angles Test - 30

Result Self Studies

Lines and Angles Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle formed by the pages of an open book is:
    Solution
    The angle formed by the pages of an open book is obtuse.
    Since the angle will always be more than $$90$$ but less than $$180$$.
  • Question 2
    1 / -0
    The measure of an angle is three times the measure of its complement. The angles are:
    Solution
    Let the complement be $$x$$.
    Then the angle $$=3x$$.
    We know, the sum of the complementary angles is $${ 90 }^{ \circ  }$$
    $$\Rightarrow x+3x={ 90 }^{ \circ  }\\ \Rightarrow 4x={ 90 }^{ \circ  }\\ \Rightarrow x=22.5^{ \circ  }$$.
    Hence, the angles are:
    $$x=1\times 22.5^{ \circ  }=22.5^{ \circ  }$$
    and $$3x=3\times 22.5^{ \circ  }={ 67.5 }^{ \circ  }$$.
    Hence, option $$D$$ is correct.
  • Question 3
    1 / -0
    When the clock shows time $$5:20$$, the angle formed between the two hands is
    Solution
    Angles

    between $$ {0}^{o} $$ and $$ {90}^{o} $$ are acute angles.

    Since at the time $$ 5:20$$, the hands of the clock form an angle less than $$ {90}^{o} $$, the angle formed between the two hands is an acute angle.

  • Question 4
    1 / -0
    If the angles of a triangle are in the ratio $$2:3:4$$, find the three angles.
    Solution
    The angles of a triangle are in the ratio $$2:3:4 $$.
    Let $$x:y:z=2:3:4$$.
    Then, $$x=2t, y=3t$$ and $$z=4t$$.

    We know, by angle sum property, the sum of all angles of a triangles is $$ 180^0$$.
    $$\implies$$ $$ 2t + 3t + 4t = 180^o $$
    $$\implies$$ $$ 9t = 180^o$$
    $$\implies$$ $$  t  = 20^o $$.

    Therefore, $$ x= 2\times 20^o= 40^o; y= 3\times 20^o= 60^o; z = 4\times 20^o= 80^o $$.

    Hence, option $$C$$ is correct.
  • Question 5
    1 / -0
    If one angle of a triangle is equal to the sum of the other two angles, then the triangle is:
    Solution
    $$\textbf{Step-1: Apply properties of sum of angles of triangle to find it's one angle}$$
                     $$\text{Let the angles of a triabgle be}$$ $$\alpha ,\beta ,\gamma $$
                     $$\text{Given}$$ $$\alpha +\beta =\gamma $$
                     $$\text{We now that in a sum of triangles sum of angles is}$$ $${ 180 }^{ \circ  }$$
                     $$\text{So,}$$$$ \alpha +\beta +\gamma ={ 180 }^{ \circ  }$$
                     $$\Rightarrow 2\gamma ={ 180 }^{ \circ  }$$
                     $$\Rightarrow \gamma  ={ 90 }^{ \circ  }$$
                     $$\text{So, it is a right angled triangle.}$$
    $$\textbf{Hence option C is correct}$$
  • Question 6
    1 / -0
    In fig, then $$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=$$

    Solution
    In $$\triangle AEC$$,
     $$ \angle A + \angle E + \angle C = 180^o $$ .....[Angle sum property].

    Also, in $$\triangle BDF$$,
    $$ \angle B + \angle D + \angle F = 180^o $$ .....[Angle sum property].

    Adding both the equations, we get,
    $$ \angle A+\angle B+\angle C+\angle D+\angle E+\angle F= 180^o + 180^o = 360^o $$.

    Therefore, option $$C$$ is correct.
  • Question 7
    1 / -0
    Complementary angle of $$72\displaystyle \frac{1}{2}^{\circ}$$ is:
    Solution

    We know, two angles are complementary when they add up to $$90^o.$$

    Given, measure of one complementary angle is $$72\dfrac{1}{2}^o=\dfrac{145}{2}^o.$$

    $$\Rightarrow$$ Measure of other complementary angle $$=90^o-\dfrac{145}{2}^o$$ $$=\dfrac{35}{2}^o=17\dfrac{1}{2}^o.$$

    $$\therefore$$ Measure of a complementary angle of $$72\dfrac{1}{2}^o=$$ $$17\dfrac{1}{2}^o.$$ 

    Therefore, option $$D$$ is correct.

  • Question 8
    1 / -0
    In the given figure, value of $$x$$ is .........

    Solution
    In  triangle $$\Delta ABC$$,
    $$\angle A+\angle ABC+\angle BCA=180^o$$
    $$34^o+ \angle ABC +30^o=180^o$$
    $$\angle ABC=116^o$$
    So, $$\angle ABC+\angle CBD=180^o$$
    $$116^o+\angle CBD=180^o$$
    $$\angle CBD=180^o-116^o$$
    $$\angle CBD=64^o$$
    Now use remote interior angle theorem.
    So,  $$\angle X = \angle CBD+  \angle D=64^o+45^o=109^o$$

  • Question 9
    1 / -0
    A reflex angle is .........a straight angle.
    Solution

  • Question 10
    1 / -0
    The measure of angle $$y$$ in the given figure is ......... .

    Solution
    $$\textbf{Step 1: Using property of angle of straight line calculate y}$$
                    $$\text{We know that a straight line extends an angle of }{180^\circ}$$
                    $$\implies \angle \text{ABC}+\angle \text{CBD}=180^\circ$$
                    $$\implies \angle \text{CBD
    }=180^\circ - \angle \text{ABC
    }$$
                    $$\implies y^\circ=180^\circ - 115^\circ$$
                    $$\implies y^\circ=65^\circ$$

    $$\mathbf{\text{Thus, the measure of angle y}=65^\circ}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now