Self Studies

Triangles Test - 35

Result Self Studies

Triangles Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In $$\displaystyle \Delta PQR,\angle P={ 67 }^{ o }$$ and $$\displaystyle \angle Q={ 76 }^{ o }$$. Arrange the sides in descending order according to the lengths we get, 
    Solution
    In $$\displaystyle \Delta PQR,\angle P={ 67 }^{ o }$$ and $$\displaystyle \angle Q={ 76 }^{ o }$$
    $$\displaystyle \therefore \quad \angle R={ 37 }^{ o }$$
    $$\displaystyle \left( \because \angle P+\angle Q+\angle R={ 180 }^{ o } \right). $$ 
    Now arranging the angles in descending order, we get 
    $$\displaystyle \angle Q>\angle P > \angle R$$ . 
    Sides opposite to greater angle are greater in length and the angles and the opposite sides of a triangle have same relation.
    Therefore, the sides arranged in descending order, we get $$PR > QR > PQ.$$
  • Question 2
    1 / -0
    In $$\displaystyle \Delta XYZ,\angle X={ 60 }^{ o },\angle Y={ 75 }^{ o }$$. The greatest side is ......... and the smallest side is ..............
    Solution
    In $$\displaystyle \Delta XYZ,\angle X={ 60 }^{ o },\angle Y={ 75 }^{ o }$$
    Also, $$\displaystyle \angle X+\angle Y+\angle Z={ 180 }^{ o }$$
    $$\displaystyle \therefore \quad \angle Z={ 45 }^{ o }$$
    $$\displaystyle \therefore \quad \angle Y$$ is the greatest angle and $$\displaystyle \angle Z$$ is the smallest angle. Thus $$XZ$$ is the greatest side and $$XY$$ is the smallest side.
  • Question 3
    1 / -0
    If two sides of a triangle are unequal, the angle opposite to the greater side is ___.
    Solution
    Let we have triangle $$\Delta ABC$$ and we consider a point $$D$$ on $$AC$$ such that $$AB=AD$$ 
    In $$\Delta ABD$$
    $$AB=AD$$
    $$\to \angle ABD=\angle ADB~~~~-(1)$$  (Angle opposite to equal sides are equal)
    In $$\Delta BDC$$
    $$\angle BDA>\angle BCD$$    (Exterior angle is greater than interior angle) 
    $$\angle ABD>\angle BCA~~~~~~-(2)$$      (from eqs.(1))
    Also, as $$\angle ABC>\angle ABD\\\to \angle ABC>\angle BCA$$
    Hence, angle opposite to greater side is greater.

  • Question 4
    1 / -0
    Which of the following sets of side lengths form a triangle?
    Solution
    A triangle can be formed only if sum of any two sides is greater than the third side.
    In option $$B$$ sum of any two sides taken at a time is greater than the third side.
    $$7+4 = 11>4$$
    $$4+4=  8>7$$
    $$4+7= 11>4$$
    In all other options, sum of first two sides is less than the third side:
    A) $$4+3<11$$
    C) $$3+1.1<5 $$
    D) $$3+4<8$$
    So option $$B$$ is correct.
  • Question 5
    1 / -0
    In $$\displaystyle \Delta PQR,\angle Q={ 67 }^{ o },\angle R={ 48 }^{ o }$$. The smallest side is ........ and the greatest side is ........
    Solution
    In $$\displaystyle \Delta PQR,\quad \angle Q={ 67 }^{ o },\angle R={ 48 }^{ o }$$.
    Also, $$\displaystyle \angle P+\angle Q+\angle R={ 180 }^{ o }$$. Thus $$\displaystyle \angle P={ 65 }^{ o }$$. 
    The greatest angle is $$\displaystyle \angle Q$$ and the smallest angle is $$\displaystyle \angle R$$. 
    Side opposite to greater angle is greater in length and side opposite to the smaller angle is smallest.
    Thus, the smallest side is $$PQ$$ and the greatest side is $$PR.$$
  • Question 6
    1 / -0
    In $$\displaystyle \Delta XYZ, XY=6 \ cm, YZ=8 \ cm$$ and $$XZ=9 \ cm.$$ The greatest angle is  ___ and the smallest angle is  ____.
    Solution
    In $$\displaystyle \Delta XYZ$$, side $$XZ$$ is the greatest and side $$XY$$ is the smallest.
    Angle opposite to greater side is greater and smaller side is smaller. 
    Thus, $$\displaystyle \angle XYZ$$ i.e. $$\angle Y $$ is the greatest and $$\displaystyle \angle YZX$$ i.e. $$\angle Z$$ is the smallest.
  • Question 7
    1 / -0
    In $$\displaystyle \Delta XYZ,\angle Y={ 90 }^{ o }$$ and $$\angle Z={ 40 }^{ o }$$. Arranging sides (according to length) in ascending order, we get:
    Solution
    $$\displaystyle \Delta XYZ,\angle Y={ 90 }^{ o }$$ and $$\angle Z={ 40 }^{ o }$$
    $$\displaystyle \therefore \quad \angle X={ 50 }^{ o }\quad \left( \because \angle X+\angle Y+\angle Z={ 180 }^{ o } \right) $$
    Now, arranging the angles in ascending order, we get $$\displaystyle \angle Z,\angle X$$ and $$ \angle Y$$
    Sides opposite to greater angle are greater in length and the angles and the opposite sides of a triangle have same relation.
    Thus, arranging the sides in ascending order $$XY< YZ < ZX.$$
  • Question 8
    1 / -0
    Which is the greatest side in the following triangle?

    Solution
    $$\displaystyle \angle A={ 69 }^{ o },\angle C={ 32 }^{ o }$$
    Now, $$\displaystyle \angle A+\angle B+\angle C={ 180 }^{ o }$$
    $$\displaystyle \therefore \quad \angle B={ 79 }^{ o }$$
    Thus, $$\displaystyle \angle B$$ is the greatest angle and hence $$AC$$ is the greatest side.
  • Question 9
    1 / -0
    In $$\displaystyle \Delta ABC,\angle B={ 55 }^{ o }$$ and $$\displaystyle \angle A={ 45 }^{ o }$$. Arranging the sides in descending order we get:
    Solution
    In $$\displaystyle \Delta ABC,\angle B={ 55 }^{ o }$$ and $$\displaystyle \angle A={ 45 }^{ o }$$
    $$\displaystyle \therefore \quad \angle C={ 80 }^{ o }\left( \because \angle A+\angle B+\angle C={ 180 }^{ o } \right) $$
    $$\displaystyle \therefore $$ Arranging the angles in descending order, we get 
    $$\displaystyle \angle C,\angle B$$ and $$\angle A$$
    Since, the angles and the opposite sides of a triangle have same relation
    Therefore, arranging the sides in descending order we get, $$AB, AC$$ and $$BC.$$
  • Question 10
    1 / -0
    For a $$\displaystyle \Delta XYZ, ZY = 12\ m, YX = 8\ m$$ and $$XZ = 10\ m$$. If $$\displaystyle \Delta ZYX\cong \Delta ABC$$, then $$AC =$$ _____ $$m$$.
    Solution
    Given : $$\displaystyle \Delta XYZ, ZY = 12\ m, YX = 8\ m$$ and $$XZ = 10\ m$$. 
    Also, $$\displaystyle \Delta ZYX\cong \Delta ABC$$.
    We know, congruent triangles have their sides congruent.
    $$\implies AB=ZY, BC=YX$$ and $$AC=ZX$$.
    $$\implies \displaystyle ZX=AC$$.
    $$\displaystyle \therefore AC=10\ m$$.

    Therefore, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now