Self Studies

Triangles Test - 41

Result Self Studies

Triangles Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    To prove that $$\Delta DEF$$ and $$\Delta ABC$$ are congruent by SAS, what additional information is needed?

    Solution
    Given $$FD=CA$$ and $$\angle D=\angle A$$
    Now for triangles to be congruent by $$SAS$$ we need a third side that include the given angles with the given equal sides.
    So $$DE=AB$$ $$\implies DE\cong AB$$

    Hence, option $$C$$ is correct.
  • Question 2
    1 / -0
    In the figure, $$\angle BCD = \angle ADC$$ and $$\angle ACB = \angle BDA$$.

    Solution
    In $$\bigtriangleup ACD$$ and $$\bigtriangleup BDC$$
    $$\angle BCD=\angle ADC$$ [Given].

    Given,$$\angle ACB=\angle BDA$$.
    Adding these two above equation , we get,
    $$\angle BCD+\angle ACB=\angle ADC+\angle BDA$$
    $$\implies$$ $$\angle ACD=\angle BDC$$.

    Also, $$CD=CD$$  [Common]
    $$\bigtriangleup ACD \cong \bigtriangleup BDC$$  .....(By $$ASA$$ congruency criterion).

    Therefore, by $$CPCT$$ rule, the corresponding parts are equal.
    Then, $$AD=BC$$ and $$\angle A=\angle B$$.

    Hence, option $$C$$ is correct.

  • Question 3
    1 / -0
    In a quadrilateral $$ACBD, AC = AD$$ and $$AB$$ bisect $$\angle A$$,  then:

    Solution
    In $$\bigtriangleup ABC$$ and  $$ \bigtriangleup ABD$$ ,

    $$AB=AB$$                      (Common)
    $$\angle CAB=\angle DAB$$         ($$AB$$ bisect $$\angle A$$)
    $$AC=AD$$                      (Given)

    By using $$SAS$$ rule of congruence,
    $$\triangle ABC\cong \triangle ABD$$
    $$\Rightarrow BC\cong BD$$        [by $$CPCT$$]

    Therefore, option $$C$$ is correct.
  • Question 4
    1 / -0
    Consider isosceles triangle $$ABC$$, in which $$\angle ABC=\angle ACB$$ ,then which of the two sides are similar?
    Solution
    Here, $$\triangle ABC$$ is an isosceles triangle.
    Given,  $$\angle ABC=\angle ACB$$.
    We know, by isosceles triangle property, angles opposite to equal sides are equal.
    Thus, if $$\angle ABC=\angle ACB$$, then $$AB=AC$$ (as $$\angle ACB$$ is opposite to side $$AB$$ and $$\angle ABC$$ is opposite to side $$AC$$).

    Hence, option $$A$$ is correct.

  • Question 5
    1 / -0
    Consider isosceles triangle $$ABC$$, in which $$\angle ABC=\angle ACB$$ , $$AB=2BC$$ and $$AB=8cm$$ . What is the perimeter of the $$\triangle ABC$$?
    Solution
    $$\triangle ABC$$ is an isosceles triangle.
    Gi en that $$\angle ABC=\angle ACB$$, $$AB=2BC$$ and $$AB=8$$ cm$$
    So, $$AB=AC=8$$ cm
    $$\Rightarrow BC=\dfrac  {AB}{2}=4$$ cm
    Perimeter of $$\triangle ABC= 8+8+4=20$$ cm.

    Here, $$\triangle ABC$$ is an isosceles triangle.
    Given,  $$\angle ABC=\angle ACB$$, $$AB=2BC$$ and $$AB=8 cm$$.
    We know, by isosceles triangle property, angles opposite to equal sides are equal.
    Then, So, $$AB=AC=8 cm$$.
    Since $$AB=2BC$$,
    $$\Rightarrow BC=\dfrac  {AB}{2}=4 cm$$.
    Thus, perimeter of $$\triangle ABC= 8+8+4=20 cm$$.

    Hence, option $$C$$ is correct.
  • Question 6
    1 / -0
    Which congruence criteria can be used to state that $$\triangle$$XOY $$\cong$$ $$\triangle$$POQ?

    Solution
    In $$\triangle XOY$$ and $$\triangle POQ$$

    $$\Rightarrow$$  $$\angle YXO=\angle QPO=65^o$$    [Given]

    $$\Rightarrow$$  $$OX=OP$$             [Given]

    $$\Rightarrow$$  $$\angle XOY=\angle POQ$$    [Vertically opposite angles]

    $$\therefore$$    $$\triangle XOY\cong\triangle POQ$$     [By ASA criteria]
  • Question 7
    1 / -0
    In Fig if $$\angle C >\angle A,\angle D> \angle E$$ then 

    Solution
    Given,
    $$\angle C > \angle A\implies AB>BC$$ ------ Side opposite to largest angle is longest
    Similarly, $$\angle D > \angle E\implies EB>BD$$

    From above,
    $$(AB+EB)>(BC+BD)$$
    $$\implies AE>CD$$ Option A
  • Question 8
    1 / -0
    In the given figure, which of the following is correct?

    Solution
    In $$\triangle PQR$$ and $$\triangle RSP$$
    $$\angle QPR = \angle SRP = 45^o$$
    $$PQ = RS = 5.5 cm$$
    $$PR = RP$$      (common)
    $$\triangle PQR \cong \triangle RSP$$    [By SAS congruency]
    Hence option (A) is correct
  • Question 9
    1 / -0
    In given figure, 
    CF and AE are equal perpendiculars on BD, BF = FE = ED.
    $$\angle$$BAE = ______.

    Solution
    In $$\triangle ABE$$ and $$\triangle CDF$$
    $$\Rightarrow$$  $$AE = CF$$                         [given]
    $$\Rightarrow$$   $$\angle AEB=\angle CFD$$         [given]
    $$\Rightarrow$$   $$BF + FE = DE + EF$$
     $$\Rightarrow$$  $$BE = DF$$
    $$\therefore$$   $$ \triangle ABE \cong \triangle CDF$$   [By SAS criteria]
    $$\therefore$$    $$\angle BAE=\angle DCF$$     [By CPCT]
  • Question 10
    1 / -0
    In given figure $$\triangle PQR \cong \triangle XYZ$$ by _______ congruency rule.

    Solution
    In $$\triangle PQR$$ and $$\triangle XYZ$$,

    $$\angle$$ $$QPR$$ $$=$$ $$\angle$$ $$YXZ$$   (given)
    $$PQ = XY     $$         (given)
    $$\angle$$ $$PQR$$ $$=$$ $$\angle$$ $$XYZ$$    (given)

    Therefore, $$\triangle PQR \cong \triangle XYZ$$ by $$ASA$$ rule of congruency.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now