Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    If (-1 + √ 3i)+ (-1 - √ 3i)= 2n , then  is equal to

  • Question 2
    1 / -0

    The complex numbers z = x + y i which satisfy the equation  = 1 lie on

  • Question 3
    1 / -0

    If k, l, m, n are four consecutive integers, then jk + jl + jm + jn is equal to

  • Question 4
    1 / -0

    If x = , then x3 equals

  • Question 5
    1 / -0

    Find the value of (1 + )4.

  • Question 6
    1 / -0

    If │z│= 1, then z - 1/(z + 1), z ≠ -1 is

  • Question 7
    1 / -0

    If w  is cube root of unity, then ( 1 + w) ( 1 + w2) ( 1 + w4) ( 1 + w8)… upto 2n factors is

  • Question 8
    1 / -0

    If w is a non real cube root of unity and (1+ w)9 = a + b w; a, b  R, then a and b are respectively the numbers

  • Question 9
    1 / -0

    Let x, y R, then x + yi is a non- real complex number if

  • Question 10
    1 / -0

    The inequality │z - 4│< │z - 2│represents the region given by

  • Question 11
    1 / -0

    z + z` ≠  0 if and only if

  • Question 12
    1 / -0

    Multiplicative inverse of the non- zero complex number x + yi (x, y R) is

  • Question 13
    1 / -0

    Locus of z = 2 + i Im (z) is given by

  • Question 14
    1 / -0

    i2 + i4 + i6 +…. Upto 2 k + 1  terms, k ª N, is

  • Question 15
    1 / -0

    If (x + yi) (3 - 4i) = 5 + 12i, then √ (X2 + y2 ) =

  • Question 16
    1 / -0

    2 √ -9 √ -16, is equals to

  • Question 17
    1 / -0

    Let x, y R, then x + yi is a purely imaginary number if

  • Question 18
    1 / -0

    The inequality │z - 6│< │z - 2│represents the region given by

  • Question 19
    1 / -0

    If (√ 3 + i )10 = a + bi ; a, b ª  R, then a and b are respectively

  • Question 20
    1 / -0

    The equation │4z - 1│ = 4 │z - 5│ represents

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 20

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now