Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If A =  is symmetric, then x =

  • Question 2
    1 / -0

    If A = where ad - bc 0 and A2 = A, then A1000

  • Question 3
    1 / -0

    If A =  is a hermitian, then find the value of x.

  • Question 4
    1 / -0

    If A = , then which of the following is correct?

  • Question 5
    1 / -0

    If , find the value of A3.

  • Question 6
    1 / -0

    If A =  and B = , then

  • Question 7
    1 / -0

    If A =  and B = , then

  • Question 8
    1 / -0

    If , then find the value of A cos x + B sin x.

  • Question 9
    1 / -0

    , then A2 + 2A equals

  • Question 10
    1 / -0

    The inverse of matrix A =is

  • Question 11
    1 / -0

    Let A and B be two square matrices such that AB = A and BA = B. Then, A2 =

  • Question 12
    1 / -0

  • Question 13
    1 / -0

    If A = , then | A | is

  • Question 14
    1 / -0

    If and , find the value of .

  • Question 15
    1 / -0

    If U = [2   - 3   4], X = [0   2    3], V = , Y = , then UV + XY is equal to

  • Question 16
    1 / -0

     and n  N, then A4n equals

  • Question 17
    1 / -0

    If \(A=\left[\begin{array}{cc}2 & -3 \\ 0 & 1\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & 2 \\ 3 & 0\end{array}\right]\) then \(\left(B^{-1} A^{-1}\right)^{-1}\) is equal to?

  • Question 18
    1 / -0

    If A, B be  matrics, then

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 18

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now