Self Studies

Rational Numbers Test - 6

Result Self Studies

Rational Numbers Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Determine 'y' so that \(y-3 \frac{1}{3}=\left(-12 \frac{7}{12}\right)\)

    Solution

    \(y=-12 \frac{7}{12}+3 \frac{1}{3}=\frac{-151}{12}+\frac{10}{3}\)

    \(=\frac{-151+40}{12}=\frac{-111}{12}=\frac{-37}{4}=-9 \frac{1}{4}\)

  • Question 2
    1 / -0

    The product of two rational numbers is \(\frac{-9}{16}\). If one of the numbers is \(\frac{-4}{3}\), then the other number is ____.

    Solution

    Let the other number be x.

    Then, \(x \times\left(\frac{-4}{3}\right)=\frac{-9}{16}\)

    \(\Rightarrow x=\frac{-9}{16} \times\left(\frac{3}{-4}\right) \Rightarrow x=\frac{27}{64}\)

  • Question 3
    1 / -0

    Rajeev, Simran and Bhuvik walk around a circular park. They take \(\frac{2}{3} h, \frac{3}{5} h\) and \(\frac{7}{12}\) to complete one round. What is the total time taken by them to complete a round in minutes?

    Solution

    Total time taken by Rajeev, Simran and Bhuvik to walk around circular park = \(\left(\frac{2}{3}+\frac{3}{5}+\frac{7}{12}\right)\)h = \(\left(\frac{40+36+35}{60}\right)\) hr. \(=\frac{111}{60}\) hr \(=\frac{111}{60} \times 60\) minutes \(=111\) minutes

  • Question 4
    1 / -0

    The average of the two middle rational numbers, if \(\frac{4}{7}, \frac{1}{3}, \frac{2}{3}, \frac{5}{9}\) are arranged in ascending order is ____ .

    Solution

    LCM of \(7,3,3,9=63\)

    \(\therefore \frac{4}{7}=\frac{4}{7} \times \frac{9}{9}=\frac{36}{63}, \frac{1}{3}=\frac{1}{3} \times \frac{21}{21}=\frac{21}{63}\), \(\frac{2}{3}=\frac{2}{3} \times \frac{21}{21}=\frac{42}{63}, \frac{5}{9}=\frac{5}{9} \times \frac{7}{7}=\frac{35}{63}\)

    So, ascending order is \(\frac{21}{63}, \frac{35}{63}, \frac{36}{63}, \frac{42}{63}\)

    i.e., \(\frac{1}{3}<\frac{5}{9}<\frac{4}{7}<\frac{2}{3}\)

    Now, the average of \(\frac{5}{9}\) and \(\frac{4}{7}\) is \(\frac{1}{2}\left[\frac{5}{9}+\frac{4}{7}\right]\)

    \(=\frac{1}{2}\left[\frac{35+36}{63}\right]=\frac{71}{126}\)

  • Question 5
    1 / -0

    Which of the following sum is in the simplest form?

    Solution

    (a) \(\frac{4}{9}+\frac{-5}{9}=\frac{4-5}{9}=\frac{-1}{9}\)

    (b) \(\frac{-2}{5}+\frac{13}{20}=\frac{-8+13}{20}=\frac{5}{20}\)

    (c) \(\frac{-5}{12}+\frac{11}{-12}=\frac{-5}{12}-\frac{11}{12}=\frac{-5-11}{12}=\frac{-16}{12}\)

    (d) \(\frac{-7}{8}+\frac{1}{12}+\frac{2}{3}=\frac{-21+2+16}{24}=\frac{-3}{24}\)

    \(\therefore\) Option (a) is in simplest form

  • Question 6
    1 / -0

    What is the sum of the rational numbers \(\frac{3}{13}\) and \(\frac{-13}{33}\) ?

    Solution

    \(\frac{3}{13}+\left(\frac{-13}{33}\right)=\frac{3}{13}-\frac{13}{33}=\frac{99-169}{429}=\frac{-70}{429}\)

  • Question 7
    1 / -0

    Find the simplest form of \(\left(-\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)\left(\frac{-2}{5}\right) \times\left(36 \frac{7}{15}-91 \frac{8}{19}+1011 \frac{231}{611}\right)\)

    Solution

    First term \(\left(-\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=\frac{-3+1+2}{6}=0\)

    Now, zero multiplied by any number is zero. This is called mathematical ingenuity.

    Otherwise if you evaluate \(\left(36 \frac{7}{15}-91 \frac{8}{19}+1011 \frac{231}{611}\right)\), it is very tedious.

  • Question 8
    1 / -0

    For any two rational numbers x and y which of the following is/are correct, if x is positive and y is negative?

    (1) x < y

    (2) x = y

    (3) x > y

    Solution

    Positive rational numbers are greater than negative rational numbers.

  • Question 9
    1 / -0

    How many pieces of equal size can be cut from a rope of 90 metres long, each measuring \(2 \frac{1}{4}\) metres?

    Solution

    Total length of the rope = 90m.

    Length of each piece = \(2 \frac{1}{4}\) m

    Number of pieces = \(\frac{90}{2 \frac{1}{4}}=\frac{90}{\frac{9}{4}}\)

    \(=90 \times \frac{4}{9}=40\)

  • Question 10
    1 / -0

    The value of x such that \(-\frac{3}{8}\) and \(\frac{x}{-24}\) are equivalent rational numbers is ____ .

    Solution

    \(\frac{-3}{8}=\frac{x}{-24} \Rightarrow \frac{-3}{8} \times \frac{3}{3}=\frac{-x}{24}\) \(\Rightarrow\) \(\frac{-9}{24}=\frac{-x}{24} \Rightarrow x=9\)

  • Question 11
    1 / -0

    If \(\frac{x}{y}=\frac{9}{8}\), then the value of \(\left(\frac{6}{7}+\frac{y-x}{y+x}\right)\) equals.

    Solution

    \(\frac{x}{y}=\frac{9}{8}\)  (Given)

    \(\therefore\left(\frac{6}{7}+\frac{y-x}{y+x}\right)=\left(\frac{6}{7}+\frac{y\left(1-\frac{x}{y}\right)}{y\left(1+\frac{x}{y}\right)}\right)\) \(=\frac{6}{7}+\left(\frac{1-\frac{9}{8}}{1+\frac{9}{8}}\right)=\frac{6}{7}+\left(\frac{\frac{-1}{8}}{\frac{17}{8}}\right)\) \(=\frac{6}{7}+\left(\frac{-1}{8} \times \frac{8}{17}\right)=\frac{6}{7}-\frac{1}{17}=\frac{102-7}{119}=\frac{95}{119}\)

  • Question 12
    1 / -0

    The given figure shows a number line such that AB = BC = CD = DE = EF = FG and VW = WX = XY = YZ

    What is the sum of the rational numbers denoted by points D and Y?

    Solution

    Point \(D \Rightarrow-1,\) Point \(y=(4 \text { division }=3 \text { units })\)

    \(\therefore\) 3 divisions \(=\frac{9}{4}\) units

    \(\therefore\) Point \(y=1+\frac{9}{4}=\frac{13}{4}\)

    \(\therefore\) D + Y = \(-1+\frac{13}{4}=\frac{9}{4}\)

  • Question 13
    1 / -0

    What should be subtracted from \(\frac{-1}{3}\) to get \(\frac{1}{6}\)?

    Solution

    Let the number to be subtracted be 'x'.

    Then, \(\frac{-1}{3}-x=\frac{1}{6}\)

    \(\Rightarrow \frac{-1}{3}=\frac{1}{6}+x\)

    \(\Rightarrow x=\frac{-1}{3}-\frac{1}{6}=\frac{-2-1}{6}=\frac{-3}{6}=\frac{-1}{2}\)

  • Question 14
    1 / -0

    Given \(a=2 \frac{6}{7}\), \(b=\frac{1}{4}\), \(c=\frac{11}{19}\) and \(d=\left(-2 \frac{1}{4}\right)\)Evaluate \(a(b-c) \div d\).

    Solution

    \(a=\frac{20}{7}, b=\frac{1}{4}: C=\frac{11}{19} ; d=\frac{-9}{4}\)

    \(a(b-c) \div d=\frac{\frac{20}{7}\left(\frac{1}{4}-\frac{11}{19}\right)}{(-9 / 4)}=\frac{20}{7} \times \frac{-4}{9} \rightarrow \times\left(\frac{19-44}{76}\right)\)

    \(=\frac{-80}{63} \times \frac{-25}{76}=\frac{80 \times 25}{63 \times 76}=\frac{500}{1197}\)

  • Question 15
    1 / -0

    By what number should \(\frac{-33}{4}\) be divided to get \(\frac{-22}{3} ?\)

    Solution

    Required number \(=\frac{-33}{4} \div \frac{-22}{3}\)\(=\frac{-33}{4} \times \frac{3}{-22}\)\(=\frac{-99}{-88} \times \frac{99}{88}=\frac{9}{8}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now