Self Studies
Selfstudy
Selfstudy

Inverse Trigonometric Functions Test - 5

Result Self Studies

Inverse Trigonometric Functions Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0.25

     

    What is the maximum and minimum value of sin x +cos x?

     

    Solution

     

     

    Let y= sin x + cos x

    dy/dx=cos x- sin x

    For maximum or minimum dy/dx=0

    Setting cosx- sin x=0

    We get cos x = sin x

    x= π/4, 5 π/4 ———-

    Whether these correspond to maximum or minimum, can be found from the sign of second derivative.

    d^2y/dx^2=-sin x - cos x=-1/√2 –1/√2 (for x=π/4) which is negative. Hence x=π/4 corresponds to maximum.For x=5 π/4

    d^2y/dx^2=-(-1/√2)-(-1/√2)=2/√2 a positive quantity. Hence 5 π/4 corresponds to minimum

    Maximum value of the function

    y= sin π/4 + cos π/4= 2/√2=√2

    Minimum value is

    Sin(5 π/4)+cos (5 π/4)=-2/√2=-√2

     

     

  • Question 2
    1 / -0.25

     

    sin (200)0   + cos (200)0 is

     

    Solution

     

     

    Because both  sin 2000  and cos 2000  lies in 3rd quadrant. In 3rd quadrant values of sin and cos are negative.

     

     

  • Question 3
    1 / -0.25

     

    If cos(-1) x + cos(-1) y = 2 π, then the value of sin(-1) x + sin(-1) y is   

     

    Solution

     

     

    If cos(-1) x + cos(-1)  y = 2 π, then the value of sin(-1) x + sin(-1) y  = π−2 π= −π.

     

     

  • Question 4
    1 / -0.25

     

    Domain of f(x) = sin−1 x −sec−1 x is

     

    Solution

     

     

    Since  sin−1 x  is defined for  |x|⩽1, and sec−1 x is defined for  |x|⩾1,therefore,f(x) is defined only when|x|=1.so, Df  = {−1,1}.

     

     

  • Question 5
    1 / -0.25

     

    The value of sin   is  

     

    Solution

     

     

    Put    therefore the given expressionis  sin2 θ= 2sin θcos θ

     

     

  • Question 6
    1 / -0.25

     

    If  5 sin θ= 3, then   is equal to

     

    Solution

     

     


    = [(5/4) + (3/4)] / [(5/4) - (3/4)]
    =(8/4) / (2/4)
    =4

     

     

  • Question 7
    1 / -0.25

     

    If sin  A  + cos  A  = 1, then sin 2A is equal to

     

    Solution

     

     

    (sinA+cosA)2
    = sin2 A+cos2 A+2sinAcosA
    =11+sin2 A=1sin2 A=0.
    (because Sin 2A = 2sin A cos A)

     

     

  • Question 8
    1 / -0.25

     

    If  θ= cos-1, then tan  θis equal to  

     

    Solution

     

     


    Therefore, tan θ=

     

     

  • Question 9
    1 / -0.25

     

    The number of solutions of the equation  cos-1 (1-x) - 2cos-1 x = π/2 is

     

    Solution

     

     

    As no value of x in (0, 1) can satisfy the given equation.Thus, the given equation has only one solution.

     

     

  • Question 10
    1 / -0.25

     

    tan  (sin−1 x) is equal to

     

    Solution

     

     

     

     

  • Question 11
    1 / -0.25

     

    If  x  ∈R, x  ≠0, then the value of sec  θ+ tan  θis  

     

    Solution

     

     

     

     

     

  • Question 12
    1 / -0.25

     

    The value of  cos 1050 is

     

    Solution

     

     

     

     

  • Question 13
    1 / -0.25

     

    If  cos(2sin−1 x) = 1/9  then x =

     

    Solution

     

     

    Put

    sin-1   x = θ⇒x = sin θ


     

     

  • Question 14
    1 / -0.25

     

     

    Solution

     

     






     

     

  • Question 15
    1 / -0.25

     

    cot  (cos−1 x) is equal to

     

    Solution

     

     

    Put,
    cos-1 x = θ⇒x = cos θ⇒cos θ

     

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now