Self Studies

Integrals Test - 7

Result Self Studies

Integrals Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0.25

    Evaluate: 

    Solution

    I = ∫√(x ²+ 5x)dx

    = ∫√(x ²+ 5x + 25/4 - 25/4)

    = ∫√{(x + 5/2)²- (5/2)²}

    ={1/2(x+5/2)(√x ²+ 5x)} - {25/8 log{(x + 5/2)+√x ²+ 5x}}

    = {(2x + 5)/4 (√x ²+ 5x)} - {25/8 log{(x + 5/2)+√x ²+ 5x}}

    Thus, option D is correct...

  • Question 2
    1 / -0.25

    Evaluate: 

    Solution

    sin2 x = 1 - cos2 x
    ∫sinx(sin2 x - 3cos2 x + 15)dx
    Put cos2 x = t
     ∫sinx(1 - cos2 x - 3cos2 x + 15)dx
    =  ∫sinx (16 - 4cos2 x)dx
    Put t = cosx, differentiate with respect to x, we get  
    dt/dx = -sinx
    = -  ∫[(16 - 4t2 )]1/2 dt
    = -2 ∫[(2)2 - (t)2 ]½
    = -2{[(2)2 - (t)2 ]½  + 2sin-1 (t/2)} + c
    = - cosx {[4 - (cos)2 x]½ - 4sin-1 (cosx/2)} + c

  • Question 3
    1 / -0.25

     

    Evaluate:  

     

    Solution

  • Question 4
    1 / -0.25

    Evaluate: 

    Solution

     (x)½ (a - x)½ dx
    =  ∫(ax - x2 )½ dx
    =  ∫{-(x2 - ax)½ } dx
    =  ∫{-(x2 - ax + a2/4 - a2/4 )½ } dx
    =  ∫{-(x - a/2)2 - a2/4 } dx
    =  ∫{(a/2)2 - (x - a/2)2 } dx
    =  ½(x - a/2) {(a/2)2 - (x - a/2)2 } + (a2/4 ) (½sin-1 (x - a)/a2 )
    = {(2x - a)/4 (ax - x2 )½ } + {a2/8 sin-1 (2x - a)/a} + c

  • Question 5
    1 / -0.25

    is equal to

    Solution

  • Question 6
    1 / -0.25

    Evaluate: 

    Solution

    None

  • Question 7
    1 / -0.25

    Solution

  • Question 8
    1 / -0.25

    Evaluate: 

    Solution

    Apply Trig Substitution: x=4sin(u)​

  • Question 9
    1 / -0.25

    Evaluate: 

    Solution

    Let y = ex
    dy/dx = ex dx
    = ∫(9 - y2 )^½dy
    = ∫[(3)2 - (y)2 ]½ dy
    Apply [(a)2 - (x)2 ] formula
    ⇒y/2[(3)2 - (y)2 ]½ + [(3)2 ]/2 sin-1 (y/3) + c
    = ex /2[(3)2 - (y)2 ]½ + [9]/2 sin-1 (ex /3) + c

  • Question 10
    1 / -0.25

    Integrate 1/(1 + x2 ) for limit [0, 1].

    Solution

     

    = π/ 4

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now