Self Studies

Determinants & ...

TIME LEFT -
  • Question 1
    1 / -0.25

    If A and B are two n x n non singular matrix, then _____________

  • Question 2
    1 / -0.25

    A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is

  • Question 3
    1 / -0.25

    What is the value of the following determinant?

    \(\begin{vmatrix} cos C & tan A & 0\\ sin B & 0 & -tanA\\ 0 & sinB & cos C \end{vmatrix}\)

  • Question 4
    1 / -0.25

    Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det  A = 3 and det B = 4. Then the det (2AB) is

  • Question 5
    1 / -0.25

    An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}\) equals:

  • Question 6
    1 / -0.25

    If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)

  • Question 7
    1 / -0.25

    If \(\Delta=\rm \begin{vmatrix}a_1&b_1&c_1\\\ a_2 &b_2&c_2\\\ a_3&b_3&c_3\end{vmatrix}\) and A1, B1, C1 denote the cofactors of a1, b1, c1 respectively, then the value of the determinant \(\rm \begin{vmatrix}A_1&B_1&C_1\\\ A_2 &B_2&C_2\\ A_3&B_3&C_3\end{vmatrix}\) is

  • Question 8
    1 / -0.25

    If a1, a2, a3, ..., a9 are in G.P., then what is the value of the determinant \(\begin{vmatrix} \rm \ln a_1 & \rm \ln a_2 & \rm \ln a_3 \\ \rm \ln a_4 & \rm \ln a_5 & \rm \ln a_6 \\ \rm \ln a_7 & \rm \ln a_8 & \rm \ln a_9 \end{vmatrix}\)?

  • Question 9
    1 / -0.25

    If \(\left| {\;\begin{array}{*{20}{c}} {x + 2}&2&2\\ 2&{x + 2}&2\\ 2&2&{x + 2} \end{array}} \right|\) = 0, then values of x satisfying this equation are

  • Question 10
    1 / -0.25

    If \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\) then (AAT)-1 = ?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now