Self Studies

Determinants & Inverse of Matrix Test - 1

Result Self Studies

Determinants & Inverse of Matrix Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0.25
    If A and B are two n x n non singular matrix, then _____________
    Solution

    Calculation:

    A and B is non - singular matrices of order n x n 

    |A| ≠  0 and |B| ≠  0     ....(i)

    A and B are of the same order, so AB is defined and is on the same order. 

    Thus,

    |AB| = |A||B|

    |AB| ≠  0             [Using equ (i)]

    Thus AB is non-singular.

  • Question 2
    1 / -0.25
    A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is
    Solution

    Since A is a scalar matrix, we have \(A = \left( {\begin{array}{*{20}{c}} k&0&0\\ 0&k&0\\ 0&0&k \end{array}} \right)\)

    \(\therefore \left| A \right| = {k^3}\)

    \(\begin{array}{l} adj\;A = \left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ {A^{ - 1}} = \frac{1}{{\left| A \right|}}\left( {adj\;A} \right) = \frac{1}{{{k^3}}}\left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ \frac{1}{k}\left( {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right) = \frac{1}{k}{\rm{I}} \end{array}\)

  • Question 3
    1 / -0.25

    What is the value of the following determinant?

    \(\begin{vmatrix} cos C & tan A & 0\\ sin B & 0 & -tanA\\ 0 & sinB & cos C \end{vmatrix}\)

    Solution

    Formula used:

    \(\rm A = \begin{vmatrix} a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} & c_{3}\ \end{vmatrix}\)

    det(A) = \(\rm a_{1}\begin{vmatrix} b_{2} & b_{3}\\ c_{2} & c_{3} \end{vmatrix} - a_{2} \begin{vmatrix} b_{1} & b_{3}\\ c_{1} & c_{3} \end{vmatrix} + a_{3} \begin{vmatrix} b_{1} & b_{2}\\ c_{1} & c_{2} \end{vmatrix}\)

    = a1(b2 c3 - b3 c2) - a2(b1c3 - b3c1) + a3 (b1c2 - b2c1)

    Calculation:

    \(\begin{vmatrix} cos C & tan A & 0\\ sin B & 0 & -tanA\\ 0 & sinB & cos C \end{vmatrix}\)

    = cos C (0 + tan A sin B) - tan A (sin B cos C) 

    = tan A sin B cos C - tan A sin B cos C

    = 0

  • Question 4
    1 / -0.25
    Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det  A = 3 and det B = 4. Then the det (2AB) is
    Solution

    Concepts:

    If A and B are square matrices of order n, then

    |K × AB|= Kn x {| A| × | B |}

    Where

     K is any real number and a scalar.

    n is the order of matrix A or B as both have the same order

    Calculation:

    Given:  A and B be (3 x 3) matrices with |A| = 4 and | B | = 3

    As A and B be (3 x 3) matrices then n = 3

     By using above formula, we get

       | 2AB| = 2³ x 3 × 4 = 8 × 3 × 4 = 96.

    | 2AB| = 96 Additional Information

    The important properties of the determinant of a matrix are given below:

    1.      | A | = | A’ | for any square matrix A, where A is the transpose matrix of A.

    2.    If in any square matrix (say A)  of order ‘N’, either two rows or two columns are identical, then | A | = 0.

    3.    If |λA| = λ× | A |, when  A is the square matrix of Order ‘N’ and λ is any scalar.

    4.    If A and B are two square matrices of the same order, then |AB |= | A |× | B |.

  • Question 5
    1 / -0.25
    An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}\) equals:
    Solution

    Concept:

    Area of equilateral triangle = \(\frac{\sqrt{3}}{4}\)×a2

    Calculation:

    Given: The co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}\)

    ⇒ (△ ABC ) = \(\dfrac{1}{2}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}\) = ( \(\frac{\sqrt{3}}{4}\)) ×a2

    On squaring both side, 

    \(\dfrac{1}{4}\)  \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{16}\)

    ⇒  \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_2 & y_2 & 1 \end{vmatrix}^2\)

     ⇒ \(\dfrac{3a^4}{4}\)                  

  • Question 6
    1 / -0.25
    If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)
    Solution

    Concept:

    Properties of determinants:

    For a n×n matrix A, det(kA) = kn det(A).

    Calculation:

    Given:

    |A| = 5

    k = 5

    From the properties of the determinants, we know that |KA| = Kn |A|, where n is the order of the determinant.

    Here, n = 2, therefore, the answer is K2 |A|.

    |5A| = 52|A|

    |5A| = 5× 5 = 125

  • Question 7
    1 / -0.25
    If \(\Delta=\rm \begin{vmatrix}a_1&b_1&c_1\\\ a_2 &b_2&c_2\\\ a_3&b_3&c_3\end{vmatrix}\) and A1, B1, C1 denote the cofactors of a1, b1, c1 respectively, then the value of the determinant \(\rm \begin{vmatrix}A_1&B_1&C_1\\\ A_2 &B_2&C_2\\ A_3&B_3&C_3\end{vmatrix}\) is
    Solution

    Concept:

    The adjoint of a square matrix is the transpose of its cofactor matrix.

    The determinant of a square matrix is the same as the determinant of its transpose.

    Determinant of the adjoint of matrix = (determinant of the matrix)\(\rm ^{n-1}\), where n = order of the matrix

    ⇒ |Adj A| =  |A|n-1

    Calculation:

    Given that determinant of the matrix

     \(Δ=\rm \begin{vmatrix}a_1&b_1&c_1\\\ a_2 &b_2&c_2\\\ a_3&b_3&c_3\end{vmatrix}\) 

    and order = n = 3

    We know that determinant formed by replacing each of its elements by its cofactor = determinant of the transpose of adjoint

    ⇒ \(\rm \begin{vmatrix}A_1&B_1&C_1\\\ A_2 &B_2&C_2\\ A_3&B_3&C_3\end{vmatrix}\) = (Δ)3-1

    ⇒ \(\rm \begin{vmatrix}A_1&B_1&C_1\\\ A_2 &B_2&C_2\\ A_3&B_3&C_3\end{vmatrix}\) = Δ2

    ∴ The value of the determinant is Δ2.

  • Question 8
    1 / -0.25

    If a1, a2, a3, ..., a9 are in G.P., then what is the value of the determinant \(\begin{vmatrix} \rm \ln a_1 & \rm \ln a_2 & \rm \ln a_3 \\ \rm \ln a_4 & \rm \ln a_5 & \rm \ln a_6 \\ \rm \ln a_7 & \rm \ln a_8 & \rm \ln a_9 \end{vmatrix}\)?

    Solution

    Concept:

    Geometric Progression:

    • The ratio between any two consecutive terms of a geometric progression is a fixed constant, called the common ratio (r) of the progression.


    Logarithms:

    • log a - log b = \(\rm \log {a\over b}\).


    Determinants:

    • A linear combination of the rows/columns does not affect the value of the determinant.
    • If two rows/columns of a given matrix are interchanged, then the value of the determinant gets multiplied by -1.
    • If a row/column of a given matrix is multiplied by a scalar k, then the value of the determinant is also multiplied by k.


    Calculation:

    Let the common ratio of the given G.P. be r.

    Let D = \(\begin{vmatrix} \rm \ln a_1 & \rm \ln a_2 & \rm \ln a_3 \\ \rm \ln a_4 & \rm \ln a_5 & \rm \ln a_6 \\ \rm \ln a_7 & \rm \ln a_8 & \rm \ln a_9 \end{vmatrix}\).

    Using C1 → C1 - C2 and C2 → C2 - C3, we get:

    ⇒ D = \(\begin{vmatrix} \rm \ln a_1 -\ln a_2& \rm \ln a_2 -\ln a_3& \rm \ln a_3 \\ \rm \ln a_4 -\ln a_5& \rm \ln a_5 -\ln a_6& \rm \ln a_6 \\ \rm \ln a_7-\ln a_8 & \rm \ln a_8-\ln a_9 & \rm \ln a_9 \end{vmatrix}\)

    ⇒ D = \(\begin{vmatrix} \rm \ln {a_1 \over a_2}& \rm \ln {a_2 \over a_3}& \rm \ln a_3 \\ \rm \ln {a_4 \over a_5}& \rm \ln {a_5 \over a_6}& \rm \ln a_6 \\ \rm \ln {a_7 \over a_8} & \rm \ln {a_8 \over a_9} & \rm \ln a_9 \end{vmatrix}\)

    ⇒ D = \(\begin{vmatrix} \rm \ln r& \rm \ln r& \rm \ln a_3 \\ \rm \ln r& \rm \ln r& \rm \ln a_6 \\ \rm \ln r & \rm \ln r & \rm \ln a_9 \end{vmatrix}\)

    Using C1 → C1 - C2, we get:

    ⇒ D = \(\begin{vmatrix} 0& \rm \ln r& \rm \ln a_3 \\0& \rm \ln r& \rm \ln a_6 \\ 0 & \rm \ln r & \rm \ln a_9 \end{vmatrix}\)

    Expanding along C1, we get:

    ⇒ D = 0.

  • Question 9
    1 / -0.25
    If \(\left| {\;\begin{array}{*{20}{c}} {x + 2}&2&2\\ 2&{x + 2}&2\\ 2&2&{x + 2} \end{array}} \right|\) = 0, then values of x satisfying this equation are
    Solution

    Given:

    \(\left| {\;\begin{array}{*{20}{c}} {x + 2}&2&2\\ 2&{x + 2}&2\\ 2&2&{x + 2} \end{array}} \right|=0\)

    C1 → C1 + C2 + C3

    \(\left| {\begin{array}{*{20}{c}} {x + 6}&2&2\\ {x + 6}&{x + 2}&2\\ {x + 6}&2&{x + 2} \end{array}} \right|=0\)

    R1 → R- R2

    \(\left( {x + 6} \right)\left| {\begin{array}{*{20}{c}} 1&2&2\\ 1&{x + 2}&2\\ 1&2&{x + 2} \end{array}} \right|=0\)

    \(\left( {x + 6} \right)\left| {\begin{array}{*{20}{c}} 0&{ - x}&0\\ 1&{x + 2}&2\\ 1&2&{x + 2} \end{array}} \right|=0\)

    \(\left( {x + 6} \right)\left( x \right)\left| {\begin{array}{*{20}{c}} 1&2\\ 1&{x + 2} \end{array}} \right|=0\)

    \(\left( {x + 6} \right) \cdot x \cdot x = 0\)

    x = 0, 0, -6

  • Question 10
    1 / -0.25
    If \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\) then (AAT)-1 = ?
    Solution

    Explanation:

    Given matrix \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\)

    Now its transpose will be 

    \(A^T = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)

    The product will be 

    AAT = \(\frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right) \cdot \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)

    Here, AAT\(\frac {1}{9} \left( {\begin{array}{*{20}{c}} 9&{0}&{0}\\ 0&{9}&{0}\\ 0&{0}&{9} \end{array}} \right)\)

    ⇒ AAT = I;

    ∴ (AAT)-1 = (I)-1 = I;
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now