Self Studies
Selfstudy
Selfstudy

Logical Reasoning Test - 17

Result Self Studies

Logical Reasoning Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1

    Find the value of 5 ÷ 5 of 5 × 2 + 2 ÷ 2 of 2 × 5?

    Solution

    Given:

    The expression = (5 ÷ 5 of 5 × 2 + 2 ÷ 2 of 2 × 5)

    Calculation:

    ⇒ (5 ÷ (5 of 5) × 2 + 2 ÷ (2 of 2) × 5)

    ⇒ ((5 ÷ 25) × 2 + (2 ÷ 4) × 5)

    ⇒ ((5/25) × 2 + (2/4) × 5)

    ⇒ ((1/5) × 2 + (1/2) × 5)

    ⇒ (2/5) + (5/2) = (29/10) = 2.9

  • Question 2
    5 / -1
    The area of a circle is given  as 121π sq. cm. What is the circumference of the circle ?
    Solution

    Given:

    The area of the circle is given as 121π sq. cm.

    Concept used:

    If R unit is the radius of a circle,

    then the area of the circle is π × R2 unit2

    and the circumference of the circle is 2πR unit

    Calculation:

    Let the radius of the circle be R.

    According to the question,

    π × R2 = 121π

    ⇒ R2 = 121

    ⇒ R = 11 (∵ The measure of the radius of a circle can't be negative)

    ⇒ 2πR = 22π 

    ∴ The circumference of the circle is 22π cm.

  • Question 3
    5 / -1
    The value of (\(1.0\bar{5}\) ÷ \(0.\overline{95}\) ) × \(0.4\overline{09}\) is :
    Solution

    Given:

    The required expression: (\(1.0\bar{5}\) ÷ \(0.\overline{95}\) ) × \(0.4\overline{09}\)

    Formula used:

    \(0.0\bar a= \frac{a}{90}\)

    \(0.\overline {aa} = \frac{aa}{99}\)

    \(0.a\overline {bc} = \frac{abc-a}{990}\)

    Calculation:

    The above expression can be written as:

    ⇒ (\((1 + 0.0\bar{5})\) ÷ \(0.\overline{95}\) ) × \(0.4\overline{09}\)

    ⇒ (\((1 + \frac{5}{90})\) ÷ \(\frac{95}{99}\) ) × \(\frac{409 - 4}{990}\)

    ⇒ (\( \frac{90+5}{90}\) ÷ \(\frac{95}{99}\) ) × \(\frac{405}{990}\)

    ⇒ (\( \frac{95}{90}\) ÷ \(\frac{95}{99}\) ) × \(\frac{405}{990}\)

    ⇒ (\( \frac{95}{90}\) × \(\frac{99}{95}\) ) × \(\frac{405}{990}\)

    ⇒ (\( \frac{99}{90}\)) × \(\frac{405}{990}\)

    ⇒ \(\frac{45}{100}\) = 0.45

    ∴ The required value of the expression is 0.45.

  • Question 4
    5 / -1
    The greatest number which divides 244 and 2052 such that it leaves remainder 4 in each case, is
    Solution

    Calculation:

    Remainder = 4

    So,

    244 - 4 = 240

    2052 - 4 = 2048

    HCF of 240 and 2048 = 16

    ⇒ The greatest number = 16 

    ∴ The greatest number is 16 which divides 244 and 2052 which leaves the remainder 4 in each case.

    The correct option is 2 i.e. 16

  • Question 5
    5 / -1
    The length of each side of an equilateral triangle is \(2\sqrt[4]{3}\) cm. What is the area of this triangle?
    Solution

    Given

    Length of each side of an equilateral triangle = \(2\sqrt[4]{3}\) cm

    Formula used

    Area of equilateral triangle = (√ 3/4) × (side)2

    Calculation

    Area of triangle = (√3/4) × (\(2\sqrt[4]{3}\))2

    ⇒ (√3/4) × 4 × ((3)1/4)2

    ⇒ (√ 3/4) × 4 × √3

    ⇒ √3 × √3

    ⇒ 3 cm2

    ∴ The area of the triangle is 3 cm2

  • Question 6
    5 / -1
    When a number n is divided by 5, the remainder is 2. When n2 is divided by 5, the remainder will be:
    Solution

    Concept:

    Dividend = Divisor × Quotient + Remainder

    Calculation:

    Let the quotient be = b 

    n = 5 × b + 2 

    n2 = (5b + 2)2

    ⇒n2 = 25b2 + 4 + 2 × 5b × 2 

    ⇒n2 = 25b2 + 4 + 20b 

    ⇒n2 = 5(5b2 + 4b) + 4 

    ∴ When nis divided by 5, the remainder will be 4.

    Alternate MethodBy Value Putting Method

    n/5 → Remainder = 2 

    For n = 7, it satisfies the condition. 

    ⇒ n2/5 = 72/5 = 49/5 

    ∴ The remainder (5 × 9 + 4) = 4 

  • Question 7
    5 / -1
    What will be the height of a cone of base radius 7 cm if its curved surface area is 308 cm2?
    Solution

    Given:

    Base radius = 7 cm

    Surface area = 308 cm2

    Concept used:

    Curved surface area of a cone = π × Radius × Slant Height

    Slant height = \( \sqrt{Radius^2 + Height^2}\)

    Calculation: 

    Let the slant height and the height on the cone be L and H cm respectively.

    According to the question,

    π × 7 × L = 308

    ⇒ 22/7 × 7 × L = 308

    ⇒ L = 14

    Hence, Height, H = \(\sqrt{14^2 - 7^2}\) = \(7\sqrt3\) cm

    ∴ The height of the cone is \(7\sqrt3\) cm.

  • Question 8
    5 / -1
    What is the H.C.F of 4x2y, 16xy3, 2x3y3
    Solution

    Given:

    The terms are 4x2y, 16xy3, 2x3y3

    Calculation: 

    Factors of 4x2y = 2 × 2 × x × x × y

    Factors of 16xy= 2 × 2 × 2 × 2 × x × y × y × y

    Factors of 2x3y3 = 2 × x × x × x × y × y × y

    Common factors = 2 × x × y = 2xy

    ∴ HCF is 2xy

  • Question 9
    5 / -1
    ABCD is a cyclic quadrilateral. ∠B = 72°. Find ∠D?
    Solution

    Given:

    ABCD is a cyclic quadrilateral and  ∠B = 72°

    Concept:

    Cyclic is a quadrilateral whose all four vertices lie on the circle.

    Also, the sum of opposite angles is equal to 180°.

    Calculation:

    ABCD is a cyclic quadrilateral

    ⇒ ∠B + ∠D = 180° ( Supplementary angles)

    ⇒ 72° + ∠D = 180°

    ⇒ ∠D = 108° 

  • Question 10
    5 / -1
    The number of sides of a regular polygon is 24 what is the interior angle of the polygon?
    Solution

    Given:

    The number of sides of the polygon = 24

    Concept:

    The sum of the interior angle and the exterior angle in 180°

    Formula used:

    The exterior angle of regular polygon = (360°/n)     Where n = The number of sides of the polygon

    Calculation:

    Let us assume the interior angle of the polygon be X

    ⇒ The exterior angle of the polygon = 360/24 = 15°

    ⇒ X = 180° - 15° = 165° 

    ∴ The required result will be 165°.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now