Concept:
The domain of inverse sine function, sin x is \(x \in \left[ { - 1,1} \right]\)
Calculation:
The domain of the function \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) is calculated as follows:
\(1 - {x^2} \geq 0\)
⇒ \(x \in \left[ { - 1,1} \right]\) ...(1)
Also,
\(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\)
\( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\)
Square it to get x,
\(0 \leq {x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)
Now,
\( {x^2}\left( {1 - {x^2}} \right) \geq 0\) and \({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)
Here we have to find the common values of x.
For, \( {x^2}\left( {1 - {x^2}} \right) \geq 0\)
Here, the values of x for which LHS will change its sign will be -1 and 1 so the values of x for the above inequality,
⇒ \(x \in \left[ { - 1,1} \right]\) ....(2)
For,
\({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)
\(t - {t^2} - \frac{1}{4} \le 0\)
\({\left( {t - \frac{1}{2}} \right)^2} \le 0\)
\(t \le \frac{1}{2}\)
\({x^2} \le \frac{1}{{\sqrt 2 }}\)
\(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\) ....(3)
Take, all the common intervals from equations 1, 2, and 3,
We will get,
\(⇒ x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)