Self Studies
Selfstudy
Selfstudy

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    The function y = sin x is invertible for which of the values of x?
    Solution

    CONCEPT:

    • For the function to be invertible for the given values of the dependent variable x, it should be Bijective for those values of x.

    EXPLANATION:

    • Referring to the graph of y = sin x
    • For \(x ∈ \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\)

    • For \(x ∈ \left[ - \frac{\pi}{2} , \frac{\pi}{2} \right]\), the function y = sin x is one-one as for each input value of x there will be only one value of y. In another word, if you will draw a horizontal line at any point in between \(x ∈ \left[ - \frac{\pi}{2} , \frac{\pi}{2} \right]\), there will be only one Intersection point so it is one-one
    •  For the function to be onto,

    Range = Co-domain of y = sin x = [-1, 1] for all \(x ∈ \left[ - \frac{\pi}{2} , \frac{\pi}{2} \right]\)

    • So it is onto also.
    • Finally for \(x ∈ \left[ - \frac{\pi}{2} , \frac{\pi}{2} \right]\) ⇒ y = sin x is Bijective ⇒ Invertible.
    • So, the correct answer is option 3

     

  • Question 2
    5 / -1
    What will be the value of \(\sin^{-1} \left( 2 \sin \frac{\pi}{2} \right)\) = ?
    Solution

    CONCEPT:

    for the function y = sin-1 x to exist,

    ⇒ |x| ≤ 1

    CALCULATION:

    For \(\sin^{-1} \left( 2 \sin \frac{\pi}{2} \right)\) to exist,

    \(\Rightarrow -1 ≤ 2 \sin \frac{\pi}{2} ≤ 1\)

    ⇒ -1 ≤ 2 ≤ 1 ⇒ can't be true

     The value of \(\sin^{-1} \left( 2 \sin \frac{\pi}{2} \right)\) will not exist.

    So the correct answer is option 4.

  • Question 3
    5 / -1
    The principle value of \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)
    Solution

    Concept:

    cos (-θ) = cos θ 

    \(\cos\left({\pi\over2}\right) = 0\)

     

    Calculation:

    x = \(\rm \tan^{-1}\left[\cos\left(-{\pi\over2}\right)\right]\)

    x = \(\rm \tan^{-1}\left[\cos\left({\pi\over2}\right)\right]\)

    x = \(\rm \tan^{-1}\left[0\right]\)

    ∵ Principle value can be ∈ \(\left[-{\pi\over2},{\pi\over2}\right]\)

    ∴ x = 0

  • Question 4
    5 / -1
    If \(\rm sin (tan^{-1}\ \frac {1}{10} \ + \ cot^{-1} \ x) = 1\) then, find the value of x
    Solution

    Concept:

    sin x = y then x = sin-1 y

    \(\rm tan^{-1} \ x + cot^{-1} \ x = \frac {π}{2}\)

    Calculation:

    Given: \(\rm sin (tan^{-1}\ \frac {1}{10} \ + \ cot^{-1} \ x) = 1\)

    ⇒ \(\rm tan^{-1}\ \frac {1}{10} \ + \ cot^{-1} \ x = sin^{-1}\ (1)\) -----(∵ sin-1 (1) = sin-1 (sin (π/2)) = π/2)

    ⇒  \(\rm tan^{-1}\ \frac {1}{10} \ + \ cot^{-1} \ x = {\pi\over2}\)

    Here, \(\rm tan^{-1} \ x + cot^{-1} \ x = \frac {π}{2}\)

    Then x = \(\rm 1\over10\)

    Additional Information

     \(\rm sin^{-1} \ x + cos^{-1} \ x = \frac {π}{2}\)

    \(\rm cosec^{-1} \ x +sec^{-1} \ x = \frac {π}{2}\)

  • Question 5
    5 / -1

    The value of \(\rm \sec \left(\tan^{-1}\dfrac{y}{2}\right)\) is:

    Solution

    Concept:

    • 1 + tan2 x = sec2 x.
    • tan (tan-1 x) = x.

     

      Calculation:

      Let's say that \(\rm \tan^{-1}\dfrac{y}{2}=\theta\), where \(\rm \theta \in \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\).

      \(\rm \Rightarrow \tan \theta = \dfrac{y}{2}\)

      \(\rm \Rightarrow \tan^2 \theta = \dfrac{y^2}{4}\)

      \(\rm \Rightarrow 1+\tan^2 \theta = 1+\dfrac{y^2}{4}=\dfrac{y^2+4}{4}\)

      \(\rm \Rightarrow \sec^2 \theta = \dfrac{y^2+4}{4}\)

      \(\rm \Rightarrow \sec \theta = \dfrac{\sqrt{y^2+4}}{2}\)

      \(\rm \Rightarrow \sec \left(\tan^{-1}\dfrac{y}{2}\right) = \dfrac{\sqrt{y^2+4}}{2}\).

    • Question 6
      5 / -1
      Find the domain of the inverse trigonometric function \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) is,
      Solution

      Concept:

      The domain of inverse sine function, sin x is \(x \in \left[ { - 1,1} \right]\)

      Calculation:

      The domain of the function \({\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)\) is calculated as follows:

      \(1 - {x^2} \geq 0\)

      ⇒ \(x \in \left[ { - 1,1} \right]\)      ...(1)

      Also, 

      \(- 1 \le 2x\sqrt {1 - {x^2}} \le 1\)

      \( - \frac{1}{2} \le x\sqrt {1 - {x^2}} \le \frac{1}{2}\)

      Square it to get x,

      \(0 \leq {x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

      Now, 

      \( {x^2}\left( {1 - {x^2}} \right) \geq 0\) and \({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

      Here we have to find the common values of x.

      For, \( {x^2}\left( {1 - {x^2}} \right) \geq 0\)

      Here, the values of x for which LHS will change its sign will be -1 and 1 so the values of x for the above inequality,

      ⇒ \(x \in \left[ { - 1,1} \right]\)      ....(2)

      For,

      \({x^2}\left( {1 - {x^2}} \right) \le \frac{1}{4}\)

      \(t - {t^2} - \frac{1}{4} \le 0\)

      \({\left( {t - \frac{1}{2}} \right)^2} \le 0\)

      \(t \le \frac{1}{2}\)

      \({x^2} \le \frac{1}{{\sqrt 2 }}\)

      \(x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)        ....(3)

      Take, all the common intervals from equations 1, 2, and 3,

      We will get, 

      \(⇒ x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]\)

    • Question 7
      5 / -1

      The graph for the defined domain of sec-1x is drawn as shown. Find the domain and range of the function.

      Solution

      Concept:

      • The domain of a function is the set of values that we are allowed to plug into our function.
         The range is the set of all possible values that the function will give when we give in the domain as input.

      Calculation:

      • The above graph is of the function sec-1x.
      • Since secant function restricted to any of the intervals [-π, 0]-{-π/2}, [0, π ] - {π/2} etc. is bijective and its range is R - (-1, 1)
      • Thus sec-1 can be defined as a function whose domain is R - (-1, 1) and the range could be any of the intervals [-π, 0]-{-π/2}, [0, π ] - {π/2} etc., 
      • Corresponding to each of these intervals, we get different branches of the function sec-1, and the branch [0, π]-{\(\frac{π}{2}\)}, is called the principal value branch of the function sec-1.
      • We thus have sec-1: R - (-1, 1) → [0,π] - {\(-\frac{π}{2}\)

      ∴ Domain(D) = R - (-1, 1) and range(R) =  [0,π] - {\(-\frac{π}{2}\)}

      Hence, the correct answer is option 1).

    • Question 8
      5 / -1
      The principal value of \(tan^{-1}(-\sqrt3) + 2 sec^{-1}(\frac{2}{\sqrt 3})\) is
      Solution

      Concept:

      • Principal value: The value of an inverse trigonometric function that lies in its principal value branch is called the principal value of that inverse trigonometric function.
      • The range of the principal value branch of tan-1 is \(\big(\frac{-\pi}{2},\frac{\pi}{2}\big)\)
      • The range of the principal value branch of sec-1 is \([0, \pi ]- {\frac{\pi}{2}}\)
      • tan-1(- x) = - tan-1x

      Calculations:

      Let y = tan-1(-√3)= - tan-1(√3),

      Then, tan y = -√3

      We know that the range of the principal value branch of tan-1 is \(\big(\frac{-\pi}{2},\frac{\pi}{2}\big)\)

      and \(tan (\frac{\pi}{3}) = \sqrt3\).

      ∴ the principal value of  tan-1(√3) is \(-\frac{\pi}{3}\) .......(1)

      Next, 

      Let x = sec-1(\(\frac{2}{\sqrt3}\)),

      Then, sec x = \(\frac{2}{\sqrt3}\)

      We know that the range of the principal value branch of sec-1 is \([0, \pi ]- {\frac{\pi}{2}}\)

      and.

      ∴ the principal value of  sec-1(\(\frac{2}{\sqrt3}\)) is \(\frac{\pi}{3}\) .......(2)

      Adding (1) and (2), we have

      \(tan^{-1}(-\sqrt3) + 2 sec^{-1}(\frac{2}{\sqrt 3})= -\frac{\pi}{3}+2\times\frac{\pi}{6}\)

      \(=0\)

      ∴ \(tan^{-1}(-\sqrt3) + 2 sec^{-1}(\frac{2}{\sqrt 3})= 0\)

      Hence, the correct answer is option 2).

    • Question 9
      5 / -1
      Simplest form of  cos - 1x + sin - 1(1/2 x) = π/6?
      Solution

      Calculation:

      ∵  sin - 1(1/2 x) = π/2 - cos - 1(1/2 x)

      Given

      cos - 1x + sin - 1(1/2 x) = π/6

      ⇒ cos - 1x + π/2 - cos - 1(1/2 x) = π/6

      ⇒ cos - 1x - cos - 1(1/2 x) = π/6 - π/2

      ⇒ cos - 1x = cos - 1(1/2 x) - π/3

      ⇒ cos - 1x = cos - 1(1/2 x) - cos - 1(1/2)

      ⇒ cos - 1x = cos - 1[x/2.1/2 + √(1 - x2/4).√(1 - 1/4)]

      ⇒ x = x/4 + √3/2 √(1 - x2/4)

      ⇒ 3/4 x = √3/4 √(4 - x2)

      ⇒ 3x2 = 4 - x2

      ⇒ 4x2 = 4

      ⇒ x = ±1

      Only x = 1 is the root of the given equation
    • Question 10
      5 / -1

      The value of \({\sin ^{ - 1}}\sin \left( {\frac{{33{\rm{\pi }}}}{5}} \right)\) is ?

      Solution

      Concept:

      \({\sin ^{ - 1}}(\sin {\rm{\theta }}) = {\rm{\theta }},{\rm{\;\;\;\;\;\theta }} \in \left( { - \frac{{\rm{\pi }}}{2},{\rm{\;}}\frac{{\rm{\pi }}}{2}} \right)\)

      sin (2nπ + θ) = sin θ

      sin (π – θ) = sin θ

      Calculation:

      We have to find the value of \({\sin ^{ - 1}}\sin \left( {\frac{{33{\rm{\pi }}}}{5}} \right)\)

      \({\sin ^{ - 1}}\sin \left( {\frac{{33{\rm{\pi }}}}{5}} \right) = {\rm{\;}}{\sin ^{ - 1}}\sin \left( {6{\rm{\pi }} + \frac{{3{\rm{\pi }}}}{5}} \right) \)

      \(= {\sin ^{ - 1}}\sin \left( {\frac{{3{\rm{\pi }}}}{5}} \right) \)                                  (∵ sin (2nπ + θ) = sin θ)

      \(= {\rm{\;}}{\sin ^{ - 1}}\sin \left( {{\rm{\pi }} - \frac{{2{\rm{\pi }}}}{5}} \right) \)

      \(= {\rm{\;}}{\sin ^{ - 1}}\sin \left( {\frac{{2{\rm{\pi }}}}{5}} \right) \)                                (∵ sin (π – θ) = sin θ)

      Here \(\frac{{2{\rm{\pi }}}}{5}\) is lies between \(\frac{-\pi}{2}\) to \(\frac{\pi}{2}\),

      \(\therefore {\rm{\;}}{\sin ^{ - 1}}\sin \left( {\frac{{2{\rm{\pi }}}}{5}} \right) \)\(= \frac{{2{\rm{\pi }}}}{5}\) 

    Self Studies
    User
    Question Analysis
    • Correct -

    • Wrong -

    • Skipped -

    My Perfomance
    • Score

      -

      out of -
    • Rank

      -

      out of -
    Re-Attempt Weekly Quiz Competition
    Self Studies Get latest Exam Updates
    & Study Material Alerts!
    No, Thanks
    Self Studies
    Click on Allow to receive notifications
    Allow Notification
    Self Studies
    Self Studies Self Studies
    To enable notifications follow this 2 steps:
    • First Click on Secure Icon Self Studies
    • Second click on the toggle icon
    Allow Notification
    Get latest Exam Updates & FREE Study Material Alerts!
    Self Studies ×
    Open Now