Multiplication of the matrix is not commutative because if the product of MN Exists, then it is not necessary that the product of NM will also exist.
Example:
Let us consider two 2 × 2 Matrices (same dimension) as shown:
\(M=\left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ \end{matrix} \right]\)
\(N=\left[ \begin{matrix} 2 & 1 \\ 1 & 3 \\ \end{matrix} \right]\)
M × N gives:
\(M× N =\left[ \begin{matrix} (1)(2)+(2)(1) & (1)( 1)+(2)( 3) \\ (3)( 2)+(4)( 1) & (3)( 1)+(4)(3) \\ \end{matrix} \right]\)
\(M× N =\left[ \begin{matrix} 4 & 7 \\ 10 & 15 \\ \end{matrix} \right]\)
Similarly, N × M gives:
\(N× M =\left[ \begin{matrix} (2)(1)+(1)(3) & (2)(2)+(1)(4) \\ (1)(1)+(3)(3) & (1)(2)+(3)(4) \\ \end{matrix} \right]\)
\(N× M =\left[ \begin{matrix} 5 & 8 \\ 10 & 14 \\ \end{matrix} \right]\)
We observe that (M × N)2×2 ≠ (N × M)2×2, even if the dimensions of the two matrices are equal.
But if we take two 2 × 2 Identity Matrices (same dimension), the product will be commutative, i.e. if:
\(M=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right]\) and
\(N=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right]\)
(M × N)2×2 = (N × M)2×2
We, therefore, conclude that (M × N)2×2 IS NOT ALWAYS EQUAL TO (N × M)2×2
Note: N3×4 × M 2×3 also does not exists, since they are not compatible with multiplication.