Self Studies
Selfstudy
Selfstudy

Mathematics Test - 15

Result Self Studies

Mathematics Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1

    A square matrix is called singular if _________.

    Solution

    Singular Matrix: 

    • A square matrix that is not invertible is called singular matrix.
    • A square matrix is singular if and only if its determinant is 0.
    • In square matrix number of columns equal to the number of rows.
    • A matrix is singular matrix if its det = 0
    • If the determinant of a matrix is not equal to zero, then the matrix is called a non-singular matrix. i.e., det ≠ 0.
    • det(AB) = det(A) × det(B)
    • det(A) × det(B) = det(B) × det(A)
    • \({\rm{det}}\left( {{{\rm{A}}^{ - 1}}} \right) = {\rm{\;}}\frac{1}{{{\rm{detA\;}}}} \Rightarrow \;{\rm{det}}\left( {{{\rm{A}}^{ - 1}}} \right) \times {\rm{\;det}}\left( {\rm{A}} \right) = 1\)
  • Question 2
    5 / -1
    If A is a singular matrix, then A(adj A) is a / an
    Solution

    Concept:

    Singular matrix: If the matrix is singular, then it's determinant = 0, and hence inverse does not exist. 

    Given:

    A is a singular matrix.

    As we know, AA-1 = I

    \( ⇒ {\rm{A}} × \left( {\frac{{{\rm{Adj\;A}}}}{{\det {\rm{A}}}}} \right) = {\rm{I}}\)

    ∴ We can write:

    A (Adj A) = det A × I 

    = 0

    A (Adj A) is a null matrix

    If A is an n x n non-singular matrix, then |Adj A| is |A|n-1

  • Question 3
    5 / -1
    If \(\rm A=\begin{bmatrix} 1& 3\\ 5& 2\end{bmatrix}\) and \(\rm B=\begin{bmatrix} 3&2\\ 1& 3\end{bmatrix}\), then |AB| = ?
    Solution

    Concept:

    Determinant of the product of matrices is equal to the product of determinants of the matrices.

    i.e. |AB| = |A| |B|.

     

    Calculation:

    Given that \(\rm A=\begin{bmatrix} 1& 3\\ 5& 2\end{bmatrix}\) and \(\rm B=\begin{bmatrix} 3&2\\ 1& 3\end{bmatrix}\)

    Now, |AB| = |A| |B| = (2 - 15)(9 - 2) = -91.

     

    Additional Information:

    The matrix product AB will be \(\rm \begin{bmatrix} 1& 3\\ 5& 2\end{bmatrix}\begin{bmatrix} 3& 2\\ 1& 3\end{bmatrix}\) = \(\begin{bmatrix} 3+3& 2+9\\ 15+2& 10+6\end{bmatrix}\) = \(\begin{bmatrix} 6& 11\\ 17& 16\end{bmatrix}\).

    And |AB| = 96 - 187 = -91.

  • Question 4
    5 / -1
    If A is an orthogonal matrix, then |A| is
    Solution

    CONCEPT:

    Since A is orthogonal,

    ⇒ AAT = I

    CALCULATION:

    Given: AAT = I

    ⇒ |AAT| = |I| 

    ⇒ |A||AT| =  |I| = 1

    The determinant of the transpose of a square matrix is equal to the determinant of the matrix, that is, |AT| = |A|

    ⇒ |A|2 = 1

    ⇒ |A| = +1

  • Question 5
    5 / -1
    The equations 2x - ky + 7 = 0 and 6x - 12y + 15 = 0 have no solution for
    Solution

    Concept: 

    If two linear equations

    ​x + b1y ​= c1​ and ​x + b2y ​= c2​. Then,

    (a) If ​​/a= b1​​/b​​= c1​​/c​​, the system is consistent and has infinitely many solutions.

    (b) If ​​/a= b1​​/b≠ c1​​/cthe system has no solution and is inconsistent

    Calculation:

    The equations 2x - ky + 7 = 0 and 6x - 12y + 15 = 0

    2/6 = - k/-12 ≠ 7/15

    Using, 2/6 = - k/-12

    ⇒ k =  24/6 =  4

    ∴ At k =  4, The equations 2x - ky + 7 = 0 and 6x - 12y + 15 = 0 have no solution 

  • Question 6
    5 / -1
    The area of triangle with vertices (K, 0), (4, 0), (0, 2) is 4 square units, then value of K is
    Solution

    Concept:

    The area of a triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3), is given by the expression

    \(\rm Area = \frac{1}{2}\begin{vmatrix} x_{1} &x_{2} & 1\\ y_{1}& y_{2} &1 \\ z_{1}&z_{2} & 1 \end{vmatrix}\)  

    Calculation:

    Given, Area of triangle, A = 4 sq. unit and vertices (K, 0), (4, 0), (0, 2) 

    since the area is always Positive But the determinant can be both positive and negative.  

    ∴ Δ = ± 4 . 

    ⇒ ± 4 = \(\rm = \frac{1}{2}\begin{vmatrix} k &0 & 1\\ 4& 0 &1 \\ 0&2 & 1 \end{vmatrix}\)  

    ⇒ ± 4  \(\rm = \frac{1}{2} \left [ k(0-2) - 0 (4-0)+1(8-0)\right ]\) 

    ⇒ ± 8 = -2k + 8 

    So, 8 = -2k + 8 or  -8 = -2k +8 

    k = 0 or  8  .

    The correct option is 2.

  • Question 7
    5 / -1

    Find the value of a, b, c and d if: \(\left[ {\begin{array}{*{20}{c}} {a - b}&{2a + c}\\ {2a - b}&{3c + d} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&5\\ 0&{13} \end{array}} \right]\)

    Solution

    Concept:

    Two matrices A and B are said to be equal if:

    • They are of same order
    • The corresponding elements of the matrices are same.

    Calculation:

    Comparing the corresponding elements:

    M11 : a – b = -1 ⇒ b = a + 1

    M21 : 2a – b = 0 ⇒ b = 2a

    ⇒ 2a = a + 1 ⇒ a = 1, b = 2

    M12 : 2a + c = 5 ⇒ 2 × 1 + c = 5 ⇒ c = 3

    M22 : 3c + d = 13 ⇒ 3 × 3 + d = 13 ⇒ d = 4

    ∴ a = 1, b = 1, c = 3, d = 4
  • Question 8
    5 / -1
    The system of linear equation kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1 has a unique solution under which one of the following conditions?
    Solution

    Concept

    Let the system of equations be,

    a1x + b1y + c1z = d1

    a2x + b2y + c2z = d2

    a3x + b3y + c3z = d3

    \(\Rightarrow \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)

    ⇒ AX = B

    ⇒ X = A-1 B = \({\rm{\;}}\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)

    ⇒ If det (A) ≠ 0, system is consistent having unique solution.

    Calculation:

    Given system of linear equation are kx + y + z = 1, x + ky + z = 1 and x + y + kz = 1

    Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right]\)

    det (A) = |A| = k (k2 – 1) – 1(k -1) + 1 (1 – k)

    ⇒ |A| = k3 – k – k + 1 + 1 – k = k3 – 3k + 2

    For unique solution,

    det (A) ≠ 0

    ⇒ k3 – 3k + 2 ≠ 0

    ⇒ (k – 1) (k2 + k - 2) ≠ 0

    ⇒ (k – 1) (k – 1) (k + 2) ≠ 0

    ∴ k ≠ 1 and k ≠ -2

  • Question 9
    5 / -1
    If x y z are all different and not equal to zero and \(\left| {\begin{array}{*{20}{c}} {1 + x}&1&1\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\) then the value of x-1 + y-1 + z-1 is equal to
    Solution

    Calculation:

    \(\left| {\begin{array}{*{20}{c}} {1 + x}&1&1\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\)

    R1 = R1 - R2

    \(\left| {\begin{array}{*{20}{c}} {x}&-y&0\\ 1&{1 + y}&1\\ 1&1&{1 + z} \end{array}} \right| = 0\)

    R2 = R2 - R3

    \(\left| {\begin{array}{*{20}{c}} {x}&-y&0\\ 0&{y}&-z\\ 1&1&{1 + z} \end{array}} \right| = 0\)

    Now, Expanding along R1, we get

    ⇒ x [y(1 + z) - (-z)] - (-y) [0 - (-z)] + 0 = 0

    ⇒ x [y + yz + z] + y [z] = 0

    ⇒ xy + xyz + xz + yz = 0

    Dividing by xyz

    ⇒ \(\rm {1\over z}+ 1 +{1\over y}+ {1\over x} = 0\)

    ⇒ \(\boldsymbol{\rm x^{-1}+ y^{-1}+ z^{-1} = -1}\)

  • Question 10
    5 / -1
    What is the minor, M23 of \( \begin{bmatrix} 0 & 4 & 6\\ -4 & 0&-2 \\ -6& 2 & 0 \end{bmatrix}\)
    Solution

    Concept:

    Let, A = [aij] be a square matrix.

    To compute the minor, Mij, and the cofactor, Cij, we find the determinant of the given matrix with row i and column j removed.

    So,  Cij = (-1)i+j Mij , where, Mij = Minor of matrix A

    Calculation:

    Given:

    \( \begin{bmatrix} 0 & 4 & 6\\ -4 & 0&-2 \\ -6& 2 & 0 \end{bmatrix}\)

    Removing the 2nd row and 3rd column we obtain the determinant as

    \(\begin{vmatrix} 0 & 4\\ -6 & 2\end{vmatrix}\)

    = 0 × 2 - (-6) × 4

    = 24

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now