Concept:
Integration by parts
Integration by parts is used to integrate the product of two or more functions. The two functions
to be integrated f(x) and g(x) are of the form \(\rm \displaystyle\int \)f(x).g(x). Thus, it can be called a product rule of
integration. Among the two functions, the first function f(x) is selected such that its derivative
formula exists, and the second function g(x) is chosen such that an integral of such a function exists.
\(\rm \displaystyle\int \)f(x).g(x).dx = f(x)\(\rm \displaystyle\int \)g(x).dx−\(\rm \displaystyle\int \big[\)f′(x)\(\rm \displaystyle\int \)g(x).dx\(\big]\).dx + C
A useful rule of integral by parts is ILATE.
I: Inverse trigonometric functions : sin-1(x), cos-1(x), tan-1(x)
L: Logarithmic functions : ln(x), log(x)
A: Algebraic functions : x2, x3
T: Trigonometric functions : sin(x), cos(x), tan (x)
E: Exponential functions : ex, 3x
Properties of logarithms
\(\rm \displaystyle e^{\log_e x}\) = x
Let y = \(\rm \displaystyle e^{\log x}\)
Taking log both sides,
⇒ log y = log \(\rm \displaystyle e^{\log x}\)
⇒ log y = log x log e
⇒ log y = log x
⇒ y = x
Calculation:
I = \(\rm \displaystyle\int e^{\log x} \sin x \ dx\)
⇒ I = \(\rm \displaystyle\int \)x sin x dx
Taking x as the first function and sin x as the second function and integrating by parts, we get,
⇒ I = x\(\rm \displaystyle\int \)sin x dx − \(\rm \displaystyle\int \big[\big(\frac{d(x)}{dx}\big) \)\(\rm \displaystyle\int \)sin x dx\(\big]\)dx
⇒ I = x (− cos x) − \(\rm \displaystyle\int \)1.(−cos x) dx
⇒ I = −x cos x + sin x + C
∴ The value of \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) is (sin x - x cos x) + C