Self Studies
Selfstudy
Selfstudy

Mathematics Test - 18

Result Self Studies

Mathematics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    \(\smallint {e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx\;\) is equal to
    Solution

    Let,

     \(I = \smallint {e^x}\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx\)

    \( = \smallint {e^x}f\left( x \right)dx + \smallint {e^x}f'\left( x \right)dx+C\)

    By solving through integration by parts, we get

    \( = \left\{ {{e^x}f\left( x \right) - \smallint f'\left( x \right){e^x}dx} \right\} + \smallint {e^x}f'\left( x \right)dx +C\)

    \( = f\left( x \right).{e^x} +C\)

    where C is constant

  • Question 2
    5 / -1
    What is \(\rm \int^\pi _0 ln\left(tan\frac{x}{2}\right) dx\) equal to?
    Solution

    Formula used:

    \(\rm \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx\)

    tan(π - θ) = - tan θ  

    Calculation:

    Let

    I = \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\)        ---(1)

    According to the formula used

    I = \(\int^π _0 ln\left(tan (π -\frac{x}{2})\right)dx\)

    ⇒ I = - \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\)

    From equation (1)

    ⇒ I = -I

    ⇒ 2I = 0

    ⇒ I = 0

    ∴ The value of the integral \(\int^π _0 ln\left(tan\frac{x}{2}\right)dx\) is 0.

  • Question 3
    5 / -1
    What is \(\displaystyle\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}dx\) equal to?
    Solution

    Concept:

    If f(x)  is even function then f(-x) = f(x)

    If f(x)  is odd function then f(-x) = -f(x)

    Properties of definite integral

    If f(x)  is even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

    If f(x)  is odd function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)

     

    Calculation:

    Let I = \(\displaystyle\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}dx\)

    Let f(x) = \(\rm \dfrac{sin^5 \ x \ cos^3 \ x}{x^4}\)

    Replaced x by -x, 

    ⇒ f(-x) = \(\rm \dfrac{sin^5 \ (-x) \ cos^3 \ (-x)}{(-x)^4}\)

    As we know sin (-θ) = - sin θ and cos (-θ) = cos θ

    \(\rm \dfrac{-sin^5 \ x \ cos^3 \ x}{x^4}\)

    ⇒ f(-x) = -f(x)      

    So, f(x) is odd function

    Therefore, I = 0     

  • Question 4
    5 / -1

    A definite integral as a limit of a sum is given as \(\lim_{n \rightarrow \infty} \sum_{r = 0}^{r = n} \frac{1}{n} sin \left( \frac{r}{n} \right) dx\). What will be the value of this sum?

    Solution

    CONCEPT:

    • The limit of a sum given in the general form can be converted into a definite integral form by replacing r/n with x and 1/n with dx.
    • We can see that here n is very large and tends to ∞ so the reciprocal of n will be very small and can be replaced as dx.

    \(I = \rm \lim_{n \rightarrow ∞} ∑_{g(n) }^{h(n)} \frac{f ( r/n)}{n} = \int_a^b f(x) dx\)

    • For the upper and lower limits of the definite integral,

    \(\rm a = \lim_{n \rightarrow ∞} \frac{g(n)}{n}\)

    \(b = \ln_{n \rightarrow ∞} \frac{h(n)}{n}\)

    ∑ is Replaced by the sign of Integration

    \(\frac{r}{n}\) is Replaced by x

    \(\frac{1}{n}\) is replaced by dx

    CALCULATION:

    Given:

    \(I = \lim_{n \rightarrow \infty} \sum_{r = 0}^{r = n} \frac{1}{n} sin \left( \frac{r}{n} \right) dx\)

    • For the upper and lower limits of the definite integral,

    \(\rm a = \lim_{n \rightarrow ∞} \frac{n}{n} = 1\)

    \(b = \ln_{n \rightarrow ∞} \frac{0}{n} = 0\)

    \(⇒ I = \int_0^1 \sin x dx\)

    ⇒ I = \((-\cos x)_0^1\) = - (cos 1 - (cos 0))

    ⇒ I = 1 - cos 1

    So, the correct answer is option 1

  • Question 5
    5 / -1
    Evaluate: \(\rm \int_{-\pi/2}^{\pi/2}|\sin x|\ dx\)
    Solution

    Concept:

    Definite Integral:

    If ∫ f(x) dx = g(x) + C, then \(\rm \int_a^b f(x)\ dx = \left[ g(x)\right]_a^b\) = g(b) - g(a).

    Properties:

    • For even functions: f(-x) = f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=2\int_{0}^af(x)\ dx\).
    • For odd functions: f(-x) = -f(x). And \(\rm \int_{-a}^ {\ \ a}f(x)\ dx=0\).
    • \(\rm \int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx\).
    • If f(x) = f(2a - x), then \(\rm \int_0^{2a}f(x)\ dx=2\int_0^af(x)\ dx\).

     

    Calculation:

    It can be observed that sin (-θ) = -sin θ.

    Let f(x) = |sin x|

    Put x = -x

    ⇒ f(-x) = |sin -x| = |-sin x| = |sin x| = f(x)

    ∴ |sin x| is an even function.

    Therefore, using the properties of definite integrals, we get:

    \(\rm \int_{-\pi/2}^{\pi/2}|\sin x|\ dx\)

    = 2\(\rm \int_{0}^{\pi/2}\sin x\ dx\)

    = 2\(\rm \left[-\cos x\right]_{0}^{\pi/2}\)

    = -2\(\rm \left[\cos \pi/2-\cos 0\right]\)

    = -2[0 - 1]

    = 2.

  • Question 6
    5 / -1

    The differentiation of Integral \(I = \rm \int_{\sin x}^{\cos x} \log t^2 \ dt\) with respect to x at x = π/4?

    Solution

    CONCEPT:

    Fundamental Theorem of Calculus (Newton-Leibniz formula)

    \(\rm \frac{d}{dx} \left[ \int_{g(x)}^{h(x)} f(t) dt \right] = f(h(x)) . h'(x) - f(g(x)) g'(x)\)

    CONCEPT:

    Given:

    \(I = \rm \int_{\sin x}^{\cos x} \log t^2 \ dt\)

    Using the Newton-Lebenitz formula

    \(\rm \frac{d}{dx} \left[ \int_{\sin x}^{\cos x} \log t^2 dt \right] = \frac{dI}{dt}\)

    \(⇒ \rm \frac{d(I)}{dx} = [\log (\cos x)^2 ] \frac{d}{dx} \cos x - [ \log (\sin x)^2 \frac{d}{dx} \sin x\)

    \(⇒ \rm \frac{d(I)}{dx} \rm = [log \cos^2 x] (- \sin x) - [\log sin^2 x] \cos x\)

    ⇒ dI/dt= -2 sin x log cos x - 2 cos x log sin x

    \(\Rightarrow \frac{dI}{dx} (x = π /4) = -2 \sin\frac{π}{4} \log \cos \frac{π}{4} - 2 \cos \frac{π}{4} \log \sin \frac{π}{4}\)

    \(\Rightarrow \frac{dI}{dx} (x = π /4)= - \frac{2}{√ 2} \log \frac{1}{√ 2} - \frac{2}{√ 2} \log \frac{1}{√ 2}\)

    \(\Rightarrow \frac{dI}{dx} (x = π /4)= - √ 2 \left( \log \left( \frac{1}{√ 2} \times \frac{1}{√ 2} \right) \right) \) (∵  log m + log n = log mn)

    ⇒ dI/dt at π/4 = -√2 log \(\frac{1}{2}\)

    ⇒ dI/dt at π/4 = √2 log 2

    So, the correct answer is option 3

  • Question 7
    5 / -1
    If f(x) and g(x) are continuous functions satisfying f(x) = f(a – x) and g(x) + g(a – x) = 2, then what is \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\) equal to?
    Solution

    Concept:

    Integral Properties:

    • \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)


    Calculation:

    Given: f(x) = f(a – x) & g(x) + g(a – x) = 2

    To find: \(\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\)

    \({\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}}\)      …. (1)

    Using integral property, \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {{\rm{a}} + {\rm{b}} - {\rm{x}}} \right){\rm{dx}}\)

    \(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)

    Using given, f(x) = f(a – x)

    \(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)      …. (2)

    Adding equation (1) & (2)

    \(2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {\rm{x}} \right){\rm{dx}} + \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right){\rm{dx}}\)

    \(\Rightarrow 2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right)\left\{ {{\rm{g}}\left( {\rm{x}} \right) + {\rm{g}}\left( {{\rm{a}} - {\rm{x}}} \right)} \right\}{\rm{dx}}\)

    Using given, g(x) + g(a – x) = 2

    \( \Rightarrow 2{\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right) \times 2{\rm{dx}}\)

    \(\Rightarrow {\rm{I}} = \mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

  • Question 8
    5 / -1
    Find the value of \(\rm \int{ {cos2x}\over {cosx} }dx\)
    Solution

    Concept:

    Some useful formulas are:

    ∫cosx dx = sinx + c

    ∫ secx dx = ln(sec x + tan x) + c

    cos2θ = 2cos2θ - 1

    \(\rm 1\over cos θ \)= secθ 

    Calculation:

    Given integration is, \(\rm ∫{ {cos2x}\over {cosx} }dx\)

    \(\rm ∫{ {2cos^2x-1}\over {cosx} }dx\)

    \(\rm ∫({ {{2cos^2x}\over {cosx}}-{{1}\over {cosx} }})dx\)

    \(\rm ∫({ {{2cosx}}-{secx} })dx\)

    = 2sinx - ln(sec x + tan x) + C, C = constant of integration

  • Question 9
    5 / -1
    If \(\int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx\ +\ cosx}dx\ =\ g''(x)\ +\ C\)  where g'(1) = 1 then C will be
    Solution

    Formula used:

    \(\int_{a}^{b}f(x)dx\ =\ \int_{a}^{b}f(a\ +\ b\ -\ x)dx\)

    \(sin(\frac{\pi}{2}\ -\ \theta)\ =\ cos\theta\)

    \(cos(\frac{\pi}{2}\ -\ \theta)\ =\ sin\theta\)

    Calculation:

    Given that,

    \(\int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx\ +\ cosx}dx\ =\ g''(x)\ +\ C\)         ----(1)

    Using the property \(\int_{a}^{b}f(x)dx\ =\ \int_{a}^{b}f(a\ +\ b\ -\ x)dx\)

    \(\int_{0}^{\frac{\pi}{2}}\frac{sin(\frac{\pi}{2}\ -\ x)}{sin(\frac{\pi}{2}\ -\ x)\ +\ cos(\frac{\pi}{2}\ -\ x)}dx\ =\ g''(x)\ +\ C\)

    \(\Rightarrow \ \int_{0}^{\frac{\pi}{2}}\frac{cosx}{sinx\ +\ cosx}dx\ =\ g''(x)\ +\ C\)        ----(1)

    Adding both equation, we will get

    \(\Rightarrow \ \int_{0}^{\frac{\pi}{2}}(\frac{sinx}{sinx\ +\ cosx}\ +\ \frac{cosx}{sinx\ +\ cosx})dx=\ 2[g''(x)\ +\ C]\)

    \(\Rightarrow \ \int_{0}^{\frac{\pi}{2}}\frac{sinx\ +\ cosx}{sinx\ +\ cosx}dx\ =\ 2[g''(x)\ +\ C]\)

    \(\Rightarrow \ \int_{0}^{\frac{\pi}{2}}dx\ =\ 2[g''(x)\ +\ C]\)

    \(\Rightarrow \ (x)_0^\frac{\pi}{2} =\ 2[g''(x)\ +\ C]\)

    \(\Rightarrow \ \frac{\pi}{4} =\ g''(x)\ +\ C\)

    Integrating both side with respect to x

    \(\Rightarrow \ \frac{\pi}{4}x =\ g'(x)\ +\ Cx\)

    Therefore, put x = 1 on above equation 

    \(\Rightarrow \ \frac{\pi}{4} =\ g'(1)\ +\ C\)        ----(3)

    But according to question,  g'(1) = 1

    \(\Rightarrow \ C\ =\ \frac{\pi}{4} \ -\ 1\)

  • Question 10
    5 / -1
    What is \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) equal to ?
    Solution

    Concept:

    Integration by parts

    Integration by parts is used to integrate the product of two or more functions. The two functions

    to be integrated f(x) and g(x) are of the form \(\rm \displaystyle\int \)f(x).g(x). Thus, it can be called a product rule of

    integration. Among the two functions, the first function f(x) is selected such that its derivative

    formula exists, and the second function g(x) is chosen such that an integral of such a function exists.

    \(\rm \displaystyle\int \)f(x).g(x).dx = f(x)\(\rm \displaystyle\int \)g(x).dx−\(\rm \displaystyle\int \big[\)f′(x)\(\rm \displaystyle\int \)g(x).dx\(\big]\).dx + C

    A useful rule of integral by parts is ILATE.

    I: Inverse trigonometric functions : sin-1(x), cos-1(x), tan-1(x)

    L: Logarithmic functions : ln(x), log(x)

    A: Algebraic functions : x2, x3

    T: Trigonometric functions : sin(x), cos(x), tan (x)

    E: Exponential functions : ex, 3x

    Properties of logarithms

    \(\rm \displaystyle e^{\log_e x}\) = x

    Let y = \(\rm \displaystyle e^{\log x}\)

    Taking log both sides,

    ⇒ log y = log \(\rm \displaystyle e^{\log x}\)

    ⇒ log y = log x log e

    ⇒ log y = log x

    ⇒ y = x

    Calculation:

    I = \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) 

    ⇒ I = \(\rm \displaystyle\int \)x sin x dx

    Taking x as the first function and sin x as the second function and integrating by parts, we get,

    ⇒ I = x\(\rm \displaystyle\int \)sin x dx − \(\rm \displaystyle\int \big[\big(\frac{d(x)}{dx}\big) \)\(\rm \displaystyle\int \)sin x dx\(\big]\)dx

    ⇒ I = x (− cos x) − \(\rm \displaystyle\int \)1.(−cos x) dx

    ⇒ I = −x cos x + sin x + C

    ∴ The value of \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) is (sin x - x cos x) + C

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now