Self Studies
Selfstudy
Selfstudy

Mathematics Test - 21

Result Self Studies

Mathematics Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    Find a unit vector parallel to the vector -2î + 3ĵ.
    Solution

    Concept:

    Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)

    Calculation:

    Let \(\vec{a}\) = -2î + 3ĵ

    \(\Rightarrow \left | \vec{a} \right |=\sqrt{(-2)^2+3^2}=\sqrt{13}\)

    ∴ Unit vector parallel to \(\vec{a}=\hat{a}=\frac{\vec{a}}{\left |\vec{a} \right |}\)

    \(\Rightarrow \frac{1}{\sqrt{13}}(-2\hat{i}+3\hat{j})\)

    \(\Rightarrow \frac{-2\hat{i}}{\sqrt{13}}+\frac{3\hat{j}}{\sqrt{13}}\)

  • Question 2
    5 / -1
    The direction cosines of the line that makes equal angles with three axes in a space are
    Solution

    Concept:

    Direction cosine:

    • In 3-D geometry, there are three axes, namely x-axes, y-axes and z-axes.  
    • If line OP passes through the origin and makes angle α, β and γ from x, y and z axes respectively.
    • The cosines of each of these angles that the line makes with the x-axis, y-axis, and z-axis respectively are called direction cosines.  

    ​Therefore, cosα, cosβ and cosγ are direction cosine and

    ⇒ cos2α + cos2β + cos2γ = 1

    Calculation:

    Let direction cosines are (cosα, cosβ, cosγ)

    We know that,

    cos2α + cos2β + cos2γ = 1    ----(1)

    According to the question, the angles are equal,

    α = β = γ = θ

    Hence, from equation (1)

    cos2θ + cos2θ + cos2θ = 1

    ⇒ 3cos2θ = 1

    ⇒ \(cos\ \theta \ =\ \pm\frac{1}{\sqrt3}\)

    Hence, direction cosines are

    (cosα, cosβ, cosγ) = \(± \frac{1}{\sqrt 3}, ±\frac{1}{\sqrt 3}, ±\frac{1}{\sqrt 3}\)

  • Question 3
    5 / -1
    If \(\vec r = ​​\vec A_1 + \lambda \vec B_1 \) and \(\vec r = ​​\vec A_2 + \lambda \vec B_2 \) are intersecting lines then which of the following is correct?
    Solution

    Concept:

    • The shortest distance between the lines \(\vec r = ​​\vec A_1 + \lambda \vec B_1 \)  and \(\vec r = ​​\vec A_2 + \lambda \vec B_2 \) is given by,

    \(d =| (\vec A_2 - \vec A_1).\hat {(\vec B_1×\vec B_2)}|\)

    \(\Rightarrow d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}|\)

    • Where \(\hat {(\vec B_1×\vec B_2)}\) is the unit vector perpendicular to \(\vec B_1 \ and \ \vec B_2 \)
    • Here.  \(\vec B_1 \ and \ \vec B_2 \) are representing the direction of the first and second lines \(\vec A_1 \ and \ \vec A_2 \) are representing the points on the first and second lines

    The above can also be written in the form,

    • If the two lines are intersecting then,

    d = 0

    Calculation:

    • For intersecting lines,

    \(d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}| = 0\)

    \(⇒ | (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}| = 0\)

    • Hence, option 4 is correct.
  • Question 4
    5 / -1
    There are 2 vectors \(\rm \vec a\)= i + 2j + k and \(\rm \vec b\) = -i + j - 3k. Find the projection of \(\rm \vec a\) on \(\rm \vec b\)
    Solution

    Concept:

    Projection of any vector  \(\rm \vec x\) on vector \(\rm \vec y\) is:

    P = \(\rm \vec x⋅\widehat y\)

    Where \(\rm \widehat y\) is unit vector in direction of vector \(\rm \vec y\)

    \(\rm \widehat y\) = \(\rm \vec y\over|\vec y|\)

    Calculation:

    Given \(\rm \vec a\) = i + 2j + k and \(\rm \vec b\) = -i + j - 3k

    Projection of \(\rm \vec a\) on \(\rm \vec b\) (let P)= \(\rm \vec a⋅\widehat b\)

    Now, unit vector in direction of vector \(\rm \vec b\) is \(\rm \widehat b ={\vec b\over|\vec b|}\)

    \(\rm \widehat b ={-i + j - 3k\over\sqrt{(-1)^2+1^2+(-3)^2}}\)

    \(\rm \widehat b ={1\over\sqrt{11}}\)(-i + j - 3k)

    Now P = (i + 2j + k) ⋅ \(\rm 1\over\sqrt{11}\)(-i + j - 3k)

    P = \(\rm 1\over\sqrt{11}\)(-1 + 2 - 3)

    P = \(\boldsymbol{\rm -2\over\sqrt{11}}\)

  • Question 5
    5 / -1
    If a, b, c are non-coplanar then find the value of 2[a b c] + [b a c] =
    Solution

    Concept:

    • If a, b, c are coplanar then [a b c] = 0
    • Three vectors are permuted in the same cyclic order, the value of the scalar triple product remains the same. ⇒  [a b c] = [b c a] = [c a b]


    Calculation:

    Here, a, b, c are non-coplanar

    To find: 2[a b c] + [b a c] =?

    ⇒ 2[a b c] + [b a c]

    = 2 [a, b, c] - [a, b, c]                (∵ [b a c] = -[a b c])

    = [a, b, c] 

    Hence, option (2) is correct.

  • Question 6
    5 / -1
    If the straight line \(\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}\) is parallel to the plane ax + by + cz + d = 0, then which one of the following is correct?
    Solution

    Concept:

    Equation of a line with direction ratio (a, b, c) that passes through the point (x1, y1, z1) is given by the formula: \(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}\)

    Equation of plane in 3-D: lx + my + nz = d

    Direction ratios of normal: l, m, n

    If two Vectors are perpendicular then the dot product of their direction ratios are equal to zero.

    Calculation:

    Here, equation of plane ax + by + cz + d = 0,

    Direction ratios of the normal = a, b, c

    Equation of the straight line \(\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}\)

    Direction ratios = l, m, n

    Since, The line and plane are parallel to each other 

    So, The line and Normal of the plane are perpendicular to each other 

    So, the dot product of their direction ratios = 0

    ∴ al + bm + cn = 0

  • Question 7
    5 / -1
    If \(|\vec a|\) = 3, \(\left| {\vec b} \right| = 4\) and \(\left| {\vec a - \vec b} \right| = 5,\) then what is the value of \(\left| {\vec a + \vec b} \right|\)?
    Solution

    Concept:

    • \({\left| {\vec a - \vec b} \right|^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{{\left| {\vec a} \right|}^2} + \;{{\left| {\vec b} \right|}^2}} \right)\)

     

    Calculation:

    Given:  \(|\vec a|\) = 3, \(\left| {\vec b} \right| = 4\) and \(\left| {\vec a - \vec b} \right| = 5,\)

    We know that,

    \({\left| {\vec a - \vec b} \right|^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{{\left| {\vec a} \right|}^2} + \;{{\left| {\vec b} \right|}^2}} \right)\)

    \(\Rightarrow {5^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{3^2} + \;{4^2}} \right)\)

    \(\Rightarrow {\left| {\vec a + \vec b} \right|^2} = \;50 - 25 = 25\)

    \(\left| {\vec a + \vec b} \right| = 5\)

  • Question 8
    5 / -1

    Find the value of k for which the line through the points (2, 4, 8) and (1, 2, 4) is parallel to the line through the points (3, 6, k) and (1, 2, 1) ?

    Solution

    Concept:

    Let us consider two lines AB and CD. The direction ratios of line AB is a1, b1, c1 and the direction ratios of line CD is a2, b2, c2.

    Then AB will be parallel to CD, if  \(\rm \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\).

    Calculation:

    Given: The line through the points (2, 4, 8) and (1, 2, 4) is parallel to the line through the points (3, 6, k) and (1, 2, 1).

    Let us consider AB be the line joining the points (2, 4, 8) and (1, 2, 4) whereas CD be the line passing through the points (3, 6, k) and (1, 2, 1).

    Let, the direction ratios of AB be: a1, b1, c1 

    ⇒ a1 = (2 – 1) = 1, b1 = (4 – 2) = 2 and c1 = (8 – 4) = 4.

    Let the direction ratios of CD be: a2, b2, c2 

    ⇒ a2 = (3 – 1) = 2, b2 = (6 – 2) = 4 and c2 = k – 1.

    ∵ Line AB is parallel to CD ⇒  \(\rm \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)

    ⇒ \(\rm \frac{1}{2}=\frac{2}{4}=\frac{4}{k-1}\)

    ⇒ \(\rm \frac{1}{2}=\frac{4}{k-1}\)

    ⇒ k - 1 = 8 ⇒ K = 9.

    Hence, correct option is 2.

  • Question 9
    5 / -1
    If the vectors \(\widehat i + 2\widehat j + 3\widehat k\)\(λ \widehat i + 4\widehat j + 7\widehat k\)\(- 3\widehat i - 2\widehat j - 5\widehat k\) are collinear if λ equals
    Solution

    Concept:

    Conditions of collinear vector:

    • Three points with position vectors \(\vec a,\;\vec b\;and\;\vec c\) are collinear if and only if the vectors \(\left( {\vec a - \vec b} \right)\) and \(\left( {\vec a\; - \vec c} \right)\) are parallel. ⇔ \(\left( {\vec a - \vec b} \right) = λ \left( {\vec a\; - \vec c} \right)\)
    • If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)

     

    Solution:

    We know that, If the points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)

    Given  \(\widehat i + 2\widehat j + 3\widehat k\)\(λ \widehat i + 4\widehat j + 7\widehat k\)\(- 3\widehat i - 2\widehat j - 5\widehat k\) are collinear

    ∴ \(\left| {\begin{array}{*{20}{c}} { 1}&{ 2}&3\\ λ&4&7\\ -3&-2&-5 \end{array}} \right| = 0\)

    ⇒ 1 (-20 + 14) – (2) (-5λ + 21) + 3 (-2λ + 12) = 0

    ⇒ -6 + 10λ – 42 - 6λ + 36  = 0

    ⇒ 4λ = 12

    ∴ λ = 3

  • Question 10
    5 / -1
    In what ratio is the line segment joining the point (−2, −3) and (3, 7) divided by y-axis ?
    Solution

    Concept:

    Let P and Q be the given two points (x1, y1) and (x2, y2) respectively, and M be the point dividing the line segment PQ internally in the ratio m : n, then from the section formula, the coordinate of the point M is given by:

    \(M(x, y) = \left \{ \left ( \frac{mx_2+nx_1}{m+n} \right ), \left ( \frac{my_2+ny_1}{m+n} \right ) \right \}\)

    Calculation:

    Let point P be the point that lies at the y-axis and divide the line segment made by two points A and B in the ratio k : 1.

    Since point P lies on the y-axis, therefore, the coordinates of the point P would be of the form (0, y).

    Now, using the section formula and equating the x-coordinates, we get

    \(0 = \frac{3k - 2}{k+1}\)

    ⇒ 3k - 2 = 0

    ⇒ k = 2/3

    ∴ k : 1 = 2 : 3

    Hence, the required ratio is 2 : 3.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now