Concept:
- The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\) and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by,
\(d =| (\vec A_2 - \vec A_1).\hat {(\vec B_1×\vec B_2)}|\)
\(d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}|\)
Where \(\hat {(\vec B_1×\vec B_2)}\) is the unit vector perpendicular to \(\vec B_1 \ and \ \vec B_2 \)
- Here. \(\vec B_1 \ and \ \vec B_2 \) are representing the direction of the first and second lines \(\vec A_1 \ and \ \vec A_2 \) are representing the points on the first and second lines
- If the two lines are intersecting then,
d = 0
Calculation:
⇒ x1 = t, y1 = 4, z1 = 5 and a1 = 2, b1 = 3, c1 = 4.
⇒ x2 = 0, y2 = 3, z2 = 4 and a2 = 3, b2 = 4, c2 = 5.
\(\vec B_1= (2,3,4)\)
\(\vec B_2 = (3,4,5)\), \(\vec A_1 = (t,4,4)\) and \(\vec A_2 = (0,3,4)\)
\(\vec A_1- \vec A_2 = (t, 1, 1)\)
For intersecting lines,
\(d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}| = 0\)
\(⇒ | (\vec A_1 - \vec A_2). {(\vec B_1×\vec B_2)}| = 0\;\;\;\;\; \ldots \left( 1 \right)\)
\(now, \ {(\vec B_1×\vec B_2)} = \begin{vmatrix} \hat i &\hat j &\hat k \\ 2& 3 & 4\\ 3& 4 & 5 \end{vmatrix}\)
\(⇒ {(\vec B_1×\vec B_2)} = (-1, 2, -1)\;\;\;\;\; \ldots \left( 2 \right)\)
By 1 and 2,
⇒ (t, 1, 1) . (-1, 2, -1) = 0
⇒ t = 1
Hence, option 1 is correct.