Self Studies
Selfstudy
Selfstudy

Mathematics Test - 22

Result Self Studies

Mathematics Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    Find the direction ratios of the line 2x = 3y = 5 - 4z ?
    Solution

    CONCEPT:

    The equation of a line with direction ratio  that passes through the point (x1, y1, z1) is given by the formula:

    \(\rm \frac{{x - {x_1}}}{a} = \frac{{y - {y_1}}}{b} = \frac{{z - {z_1}}}{c}\)

    CALCULATION:

    Given: Equation of line is 2x = 3y = 5 - 4z

    We will first be converting the above expression in standard form for comparison, i.e. we need to get rid of coefficients of x, y, and z, i.e. 2, 3, and 4 respectively.

    LCM of 2, 3, and 4 is 12.

    ∴ Dividing the above equation by 12, we get:

    \(⇒ \frac{{2x}}{{12}} = \frac{{3y}}{{12}} = \frac{{5\ -\ 4z}}{{12}}\;\)

    \(⇒ \frac{x}{6} = \frac{y}{4} = \frac{{z - \frac{5}{4}}}{{ - 3}}\;\)

    By comparing the above equation with \(\rm \frac{{x - {x_1}}}{a} = \frac{{y - {y_1}}}{b} = \frac{{z - {z_1}}}{c}\) we get

    ⇒ a = 6, b = 4 and c = -3

    So, the direction ratios of the given line is: <6, 4, - 3>

    Hence, the correct option is 2.

  • Question 2
    5 / -1
    If \(\vec{a} = 4\hat{j}\) and \(\vec{b} = 3\hat{j} + 4\hat{k}\), then the vector form of the component of \(\vec{a}\) along \(\vec{b}\) is
    Solution

    Concept:

    The vector form of the component of \(\vec{a}\) along \(\vec{b}\) = \(\rm \left(\dfrac {\vec a. \vec b}{|\vec b|^2}\right)\vec b\)

    Calculations:

    Given,  \(\vec{a} = 4\hat{j}\) and \(\vec{b} = 3\hat{j} + 4\hat{k}\)

    ⇒ \(\rm \vec a . \vec b = (4\vec j).(3\vec j + 4 \vec k)\)

    ⇒ \(\rm \vec a . \vec b = 12\)

    and  \(\rm |\vec b| = 5 \)

    The vector form of the component of \(\vec{a}\) along \(\vec{b}\) = \(\rm \left(\dfrac {\vec a. \vec b}{|\vec b|^2}\right)\vec b\)

    \(\rm \dfrac {12}{25}(3\vec j + 4 \vec k)\)

    Hence, if \(\vec{a} = 4\hat{j}\) and \(\vec{b} = 3\hat{j} + 4\hat{k}\), then the vector form of the component of \(\vec{a}\) along \(\vec{b}\) is \(\rm \dfrac {12}{25}(3\vec j + 4 \vec k)\)

  • Question 3
    5 / -1
    If \(\overrightarrow {{\rm{a}}} \) and \(\overrightarrow {{\rm{b}}} \) are vectors such that \(\overrightarrow {|{\rm{a|}}} { = 2,{\rm{\;}}\overrightarrow {|{\rm{b}|}} }= 7\) and \(\overrightarrow {{\rm{a\;}}} \times {\rm{\;\vec b}} = 3{\rm{\hat i}} + 2{\rm{\hat j}} + 6{\rm{\hat k}},\) then what is the acute angle between \(\overrightarrow {{\rm{a}}} \) and \(\overrightarrow {{\rm{b}}} \)?
    Solution

    Concept:

    1. If two vector a and b then \(\left| {{\rm{\vec a\;}} \times {\rm{\;\vec b}}} \right| = \left| {{\rm{\vec a}}} \right|{\rm{\;}}\left| {{\rm{\vec b}}} \right|\sin {\rm{\theta }}\)

     Where θ is angle between vector a and b.

    1. Vector A = \({\rm{x\hat i}} + {\rm{y\hat j}} + {\rm{z\hat k}}\) then |A| = \(\sqrt {{{\rm{x}}^2} + {{\rm{y}}^2} + {{\rm{z}}^2}} \)

     

    Calculation:

    Given that,

    \(\overrightarrow {|{\rm{a|}}} { = 2,{\rm{\;}}\overrightarrow {|{\rm{b}|}} }= 7​​​​\:and\:\overrightarrow {{\rm{a\;}}} \times {\rm{\;\vec b}} = 3{\rm{\hat i}} + 2{\rm{\hat j}} + 6{\rm{\hat k}},\)

    Now

    \(\begin{array}{l} \Rightarrow \left| {{\rm{\vec a\;}} \times {\rm{\;\vec b}}} \right| = \sqrt {{3^2} + {2^2} + {6^2}} \\ \Rightarrow \left| {{\rm{\vec a\;}} \times {\rm{\;\vec b}}} \right| = \sqrt {49} = 7\\ \Rightarrow \left| {{\rm{\vec a\;}} \times {\rm{\;\vec b}}} \right| = \left| {{\rm{\vec a}}} \right|{\rm{\;}}\left| {{\rm{\vec b}}} \right|\sin {\rm{\theta }} \end{array}\)

    Put all values in above equation

    ⇒ 7 = 2 × 7 × sin θ

    ⇒ sin θ = 1/2

    ⇒ θ = 30°
  • Question 4
    5 / -1
    In what ratio is the line joining the points A (- 1, 1) and B (5, 7) divided by the line x + y = 4?
    Solution

    CONCEPT:

    Let A (x1, y1) and B (x2, y2) be the two given points and the point P (x, y) divide the line joining the points A and B in the ratio m : n, then

    • Point of internal division is given as: \(\left( {x,\;y} \right) = \left( {\frac{{m{x_2} + n{x_1}}}{{m + n}},\frac{{m{y_2} + n{y_1}}}{{m + n}}} \right)\)
    • Point of external division is given as: \(\left( {x,y} \right) = \left( {\frac{{m{x_2} - n{x_1}}}{{m - n}},\frac{{m{y_2} - n{y_1}}}{{m - n}}} \right)\)

    Note: If P is the mid-point of line segment AB, then \(P\left( {x,\;y} \right) = \left( {\frac{{{x_1} + {x_2}}}{2},\frac{{{y_1} + {y_2}}}{2}} \right)\)

    CALCULATION:

    Here, we have to find the ratio in which the line x + y = 4 divides the line joining the points A (- 1, 1) and B (5, 7).

    Let the line x + y = 4 divides the line joining the points A (- 1, 1) and B (5, 7) in the ratio m : 1

    Let the point of division be C.

    As we know that, the point  internal division is given by: \(\left( {x,\;y} \right) = \left( {\frac{{m{x_2} + n{x_1}}}{{m + n}},\frac{{m{y_2} + n{y_1}}}{{m + n}}} \right)\)

    \(⇒ C = \left( {\frac{{5m - 1}}{{m + 1}},\frac{{7m + 1}}{{m + 1}}} \right)\)

    ∵ C is the point of division i.e C lies on the line x + y = 4 and the coordinates of the point C will satisfy the equation of the line x + y = 4.

    \(⇒ \frac{5m - 1}{m + 1} + \frac{7m + 1}{m + 1} =4\)

    ⇒ (5m - 1) + (7m + 1) = 4(m + 1)

    ⇒ m = 1/2

    So, the required ratio is: (1/2) : 1 = 1 : 2

    Hence, option B is the correct answer.

  • Question 5
    5 / -1
    If the direction cosines of a line are (1/k, 2/k, -2/k) then k is
    Solution

    Concept:

    1. Direction angles: If α, β, and γ are the angles made by the line segment with the coordinate axis then these angles are termed to be the direction angles.
    2. Direction cosines: The cosines of direction angles are the direction cosines of the line. Hence, cos α, cos β and cos γ are called as the direction cosines


    It is denoted by l, m and n. ⇔ l = cos α, m = cos β and n = cos γ

    1. The sum of squares of the direction cosines of a line is equal to unity.
    2. l2 + m2 + n2 = 1 or cos2 α + cos2 β + cos2 γ = 1


    Calculation:

    Given:

    Direction cosines of a line are (1/k, 2/k, -2/k)

    So, l = 1/k, m = 2/k and n = -2/k

    We know that sum of squares of the direction cosines of a line is equal to unity

    ⇒ l2 + m2 + n2 = 1

    \(\Rightarrow \;\frac{1}{{{k^2}}} + \;\frac{4}{{{k^2}}} + \;\frac{4}{{{k^2}}} = 1\)

    \(\Rightarrow \frac{9}{{{k^2}}} = 1\)

    ⇒ k2 = 9

    ∴ k = ± 3

  • Question 6
    5 / -1
    If \(\vec a\) and \(\vec b\) represent the sides AB and BC of a regular hexagon ABCDEF, then \(\vec {FA}\) is equal to
    Solution

    Concept:

    Triangle Law of Vector Addition: When two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.

    \(⇒ {\rm{\vec R}} = {\rm{\vec A}} + {\rm{\vec B}}\)

    Reguar hexagon: A regular hexagon is a kind of polygon with 6 equal sides. 

    Properties:

    • It is having six sides and six angles.
    • The lengths of all the sides are equal.
    • Measurements of all the angles are equal.
    • The total number of diagonals in it is 9.
    • It is having diagonals of two different lengths.
    • Short diagonal : d= 3 × √a
    • Long Diagonal: d= 2 × a

     

    Solution:

    ABCDEF is a Regular hexagon such that \(\vec{AD}\parallel \,\vec{BC}\)  and \(\vec{AD}= 2\vec{BC}\)

    By triangle law of vector addition,

    \(\vec{AC}=\vec{AB}+\vec{BC}\)

    ⇒ \(\vec{AC}=\vec{a}+\vec{b}\)

    ⇒ \(\vec{AC}+\vec{CD}=\vec{AD}\)

    ⇒ \((\vec{a}+\vec{b})+\vec{CD}=2\vec{b}\)   

    ⇒ \(\vec{CD}=2\vec{b}-(\vec{a}+\vec{b})\)

    ⇒ \(\vec{CD}=\vec{b}-\vec{a}\)

    ⇒ \(|\vec{CD}|= |\vec{FA}|=|\vec{b}-\vec{a}|\)

    But the CD and FA are in the opposite direction

    ⇒ \(- \vec{CD}= \vec{FA}\)

    ⇒ \(-[\vec{b}-\vec{a}]= \vec{FA}\)

    ⇒ \(\vec{a}-\vec{b}= \vec{FA}\)

    ∴ \( \vec{FA}=\vec{a}-\vec{b}\)

  • Question 7
    5 / -1
    Find a unit vector in the direction of \(\overrightarrow {AB} \), where A (1, 2, 3) and B (4, 5, 6) are the given points ?
    Solution

    Concept:

    •  If \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) is a vector then the magnitude of the vector is given by \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
    • If \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) is a vector then the unit vector in the direction of \(\vec a\) is given by: \(\hat a = \frac{{\vec a}}{{\left| {\vec a} \right|}}\)
    • If A (x, y, z) and B (p, q, r) are two points in a space then the vector \(\overrightarrow {AB} = \left( {p - x} \right)\;\hat i + \left( {q - y} \right)\;\hat j + \left( {r - z} \right)\;\hat k\)

    Calculation:

    Given: A (1, 2, 3) and B (4, 5, 6) are any two points.

    As we know that, If A (x, y, z) and B (p, q, r) are two points in a space then the vector \(\overrightarrow {AB} = \left( {p - x} \right)\;\hat i + \left( {q - y} \right)\;\hat j + \left( {r - z} \right)\;\hat k\)

    \(\Rightarrow \overrightarrow {AB} = 3\;\hat i + 3\;\hat j + 3\;\hat k\)

    As we know that, if \(\vec a\) is a vector then the magnitude of the vector \(\vec a\) is given by: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)

    \(\Rightarrow \left| {\overrightarrow {AB} } \right| = \sqrt {{3^2} + {3^2} + {3^2}} = \sqrt {27} \)
    As we know that if \(\vec a\) is a vector then the unit vector in the direction of \(\vec a\) is given by: \(\hat a = \frac{{\vec a}}{{\left| {\vec a} \right|}}\)
    ∴ The unit vector in the direction of \(\overrightarrow {AB} \) is \( \frac{1}{{\sqrt 3 }}\;\hat i + \frac{1}{{\sqrt 3 }}\;\hat j + \frac{1}{{\sqrt 3 }}\;\hat k\)
  • Question 8
    5 / -1
    Find the angle between the planes 2x - 3y + 4z = 1 and - x + y = 4 ?
    Solution

    Concept:

    The angle between the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 where a1, b1, c1, a2, b2 and c2 are the direction ratios of the normal to the plane is given by: \(\cos θ = \frac{{|{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}|}}{{\left( {\sqrt {a_1^2 + b_1^2 + c_1^2} } \right) ⋅ \left( {\sqrt {a_2^2 + b_2^2 + c_2^2} } \right)}}\)

    Calculation:

    Given: The equation of planes is: 2x - 3y + 4z = 1 and - x + y = 4

    The given equations can be re-written as: 2x - 3y + 4z - 1 = 0 and - x + y - 4 = 0

    By comparing the above equations with a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 , we get

    ⇒ a1 = 2, b1 = - 3, c1 = 4, a2 = - 1, b2 = 1 and c2 = 0

    ⇒ a1 ⋅ a2 + b1 ⋅ b2 + c1 ⋅ c2 = - 2 - 3 + 0 = - 5

    \(⇒ \sqrt {a_1^2 + b_1^2 + c_1^2} = \sqrt {29} \;and\;\sqrt {a_2^2 + b_2^2 + c_2^2} = \sqrt {2} \)

    \(⇒ \cos θ = \; \frac{5}{{\sqrt {58} }}\)

    ⇒ \(\theta = {\cos ^{ - 1}}\left( { \frac{5}{{\sqrt {58} }}} \right)\)

  • Question 9
    5 / -1
    If the two lines  \(\frac{x-t}{2}=\frac{y-4}{3}=\frac{z-5}{4}\) and \(\frac{x}{3}=\frac{y-3}{4}=\frac{z-4}{5}\) are intersecting then; what will be the value of t?
    Solution

    Concept:

    • The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\)  and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by,

    \(d =| (\vec A_2 - \vec A_1).\hat {(\vec B_1×\vec B_2)}|\)

    \(d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}|\)

    Where \(\hat {(\vec B_1×\vec B_2)}\) is the unit vector perpendicular to \(\vec B_1 \ and \ \vec B_2 \)

    • Here.  \(\vec B_1 \ and \ \vec B_2 \) are representing the direction of the first and second lines \(\vec A_1 \ and \ \vec A_2 \) are representing the points on the first and second lines
    • If the two lines are intersecting then,

    d = 0

    Calculation:

    ⇒ x1 = t, y1 = 4, z1 = 5  and a1 = 2, b1 = 3, c1 = 4.

    ⇒ x2 = 0, y2 = 3, z2 = 4  and a2 = 3, b2 = 4, c2 = 5.

    \(\vec B_1= (2,3,4)\)

    \(\vec B_2 = (3,4,5)\)\(\vec A_1 = (t,4,4)\) and \(\vec A_2 = (0,3,4)\)

    \(\vec A_1- \vec A_2 = (t, 1, 1)\)

    For intersecting lines,

    \(d =|\frac{ (\vec A_2 - \vec A_1). {(\vec B_1×\vec B_2)}}{|\vec B_1×\vec B_2|}| = 0\)

    \(⇒ | (\vec A_1 - \vec A_2). {(\vec B_1×\vec B_2)}| = 0\;\;\;\;\; \ldots \left( 1 \right)\)

    \(now, \ {(\vec B_1×\vec B_2)} = \begin{vmatrix} \hat i &\hat j &\hat k \\ 2& 3 & 4\\ 3& 4 & 5 \end{vmatrix}\)

    \(⇒ {(\vec B_1×\vec B_2)} = (-1, 2, -1)\;\;\;\;\; \ldots \left( 2 \right)\)

    By 1 and 2,

    ⇒ (t, 1, 1) . (-1, 2, -1) = 0

    ⇒ t  = 1

    Hence, option 1 is correct.

  • Question 10
    5 / -1
    If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), find the angle between \(\vec a\) and \(\vec b\).
    Solution

    Concept:

    Let the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)

    \(\rm \vec a.\vec b = 2ab cos\;\theta\)

     

    Calculations:

    consider, the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)

    Given, \(\vec a + \vec b + \vec c = \vec 0 \)

    \(\vec a + \vec b = - \vec c \)

    \(\rm |\vec a + \vec b| = |- \vec c |\)

    Squaring on both side, we get

    \(\rm |\vec a + \vec b|^2 = |- \vec c |^2\)

    \(\rm |\vec a|^2 +2\;\vec a.\vec b+ |\vec b|^2 = |- \vec c |^2\)

    \(\rm |\vec a|^2 +|\vec b|^2+2\;ab\cos\;\theta = |- \vec c |^2\)

    \(\rm (3)|^2 +(5)^2+2\;(3)(5)\cos\;\theta = (7)^2\)

    \(\rm 30\cos\;\theta = 15\)

    \(\rm \cos\;\theta = \dfrac 12\)

    ⇒ \(\rm \theta\) = π / 3

    Hence, If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), then the angle between \(\vec a\) and \(\vec b\)is π / 3

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now