Self Studies
Selfstudy
Selfstudy

Mathematics Test - 27

Result Self Studies

Mathematics Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1

    Consider the following statements:

    1. Every zero matrix is a square matrix.

    2. A matrix has a numerical value.

    3. A unit matrix is a diagonal matrix.

    Which of the above statements is / are correct?

    Solution

    Concept:

    Zero matrices:

    A zero matrix is a matrix with all entries are zero.

    It is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns. 

    Unit matrix: A unit matrix is a matrix whose diagonal entries are 1 i.e. all diagonal elements are same and remaining entries are zero

     

    Calculations:

    A zero matrix is a matrix with all entries are zero. It may be or may not a square matrix.

    A matrix has a determinant not numerical value. It is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns. 

    A unit matrix is a matrix whose diagonal entries are 1 i.e. all diagonal elements are same and remaining entries are zero.

    Hence, a unit matrix is a diagonal matrix

     

  • Question 2
    5 / -1

    The given matrices are:

    \(A = \left[ {\begin{array}{*{20}{c}} {\sqrt 2 }&0&0\\ 0&{\sqrt 2 }&0\\ 0&0&{\sqrt 2 } \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2&0&0\\ 0&1&0\\ 0&0&{ - 5} \end{array}} \right]\)

    Solution

    Concept:

    Diagonal Matrix:

    Any square matrix in which all the elements are zero except those in the principal diagonal is called a diagonal matrix.

    i.e A = [aij]n × n is a diagonal matrix if aij = 0 for i not equal to j.

    Identity Matrix:

    A diagonal matrix in which all the principal diagonal elements are equal to 1 is called an identity matrix. It is also known as unit matrix whereas an identity matrix of order n is denoted by I or In

    Scalar Matrix:

    A diagonal matrix in which all the principal diagonal elements are equal is called a scalar matrix.

    Calculation:

    Given: \(A = \left[ {\begin{array}{*{20}{c}} {\sqrt 2 }&0&0\\ 0&{\sqrt 2 }&0\\ 0&0&{\sqrt 2 } \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2&0&0\\ 0&1&0\\ 0&0&{ - 5} \end{array}} \right]\)

    A square matrix whose all the elements except the diagonal elements are zeroes is called a diagonal matrix.

    \(A = {\left[ {{a_{ij}}} \right]_{m \times n}}\) is a diagonal matrix if aij = 0 when i ≠ j.

    A diagonal matrix is said to be a scalar matrix if its diagonal elements are same (non - zero).

    \(A = {\left[ {{a_{ij}}} \right]_{m \times m}}\) is a scalar matrix if aij = 0 when i ≠ j, aij = k when i = j.

    From the above definitions we can clearly say that, matrix A is a scalar matrix and matrix B is a diagonal matrix.

    Hence, option C is the correct answer.

    Note: A scalar matrix is a diagonal matrix but a diagonal matrix may or may not be a scalar matrix.

  • Question 3
    5 / -1
    If \(A = \left[ {\begin{array}{*{20}{c}} {\sin\alpha }&{ - \cos \alpha }\\ {\cos\alpha }&{\sin \alpha } \end{array}} \right]\), then for what value of α, A is an identity matrix?
    Solution

    Concept

    Diagonal Matrix:

    Any square matrix in which all the elements are zero except those in the principal diagonal is called a diagonal matrix.

    i.e A = [aij]n × n is a diagonal matrix if aij = 0 for i not equal to j.

    Identity Matrix:

    A diagonal matrix in which all the principal diagonal elements are equal to 1 is called an identity matrix. It is also known as unit matrix whereas an identity matrix of order n is denoted by I or In

    Calculation:

    Given: \(A = \left[ {\begin{array}{*{20}{c}} {\sin\alpha }&{ - \cos \alpha }\\ {\cos\alpha }&{\sin \alpha } \end{array}} \right]\)

    Here, we have to find the value of α such that A is an identity matrix.

    i.e A = I

    \(⇒ \left[ {\begin{array}{*{20}{c}} {\sin α }&{ - \cos α }\\ {\cosα }&{\sin α } \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    ⇒ sin α = 1,

    ⇒ cos α = 0

    ⇒ α = 90°

    ∴ The required value is 90° .

  • Question 4
    5 / -1
    If A \(= \;\left[ {\begin{array}{*{20}{c}} 1&{ 1}\\ 4&{ 6} \end{array}} \right]\) , find k so that \({A^2} = kA - 2I\), where I is an identity matrix.
    Solution

    Concept:

     If A and B are two matrices such that the no. of columns of A is equal to the no. of rows of B. If A = [aij] is a m × n matrix and B = [bij] be a n × p matrix, then the product AB is the resultant matrix of order m × p and is defined as:

    \({\left( {AB} \right)_{ij}} = \;\mathop \sum \limits_{k = 1}^n {a_{ik}} \times {b_{kj}}\forall \;i = 1,\;2, \ldots ,m\;and\;j = 1,\;2,\; \ldots .,\;p\)

    Calculation:

    Given: A \(= \;\left[ {\begin{array}{*{20}{c}} 1&{ 1}\\ 4&{ 6} \end{array}} \right]\)

    Here, we have to find the value of k such that \({A^2} = kA - 2I\)

    \({A^2}\; = \;A.A\; = \;\left[ {\begin{array}{*{20}{c}} 1&{ 1}\\ 4&{ 6} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ 1}\\ 4&{ 6} \end{array}} \right]\;\\ = \;\left[ {\begin{array}{*{20}{c}} {1\left( 1 \right)\; + \;\left( { 1} \right)\left( 4 \right)}&{1\left( { 1} \right)\; + \;\left( { 1} \right)\left( { 6} \right)}\\ {4\left( 1 \right)\; + \;\left( { 6} \right)\left( 4 \right)}&{4\left( { 1} \right)\; + \;\left( { 6} \right)\left( { 6} \right)} \end{array}} \right]\; = \;\left[ {\begin{array}{*{20}{c}} 5&{ 7}\\ 28&{ 40} \end{array}} \right]\)

    \({A^2}\; = \;kA - 2I\)

    \(\left[ {\begin{array}{*{20}{c}} 5&{ 7}\\ 28&{ 40} \end{array}} \right]\; = \;k\left[ {\begin{array}{*{20}{c}} 1&{ 1}\\ 4&{ 6} \end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\\= \;\left[ {\begin{array}{*{20}{c}} {k - 2}&{ k}\\ {4k}&{ 6k - 2} \end{array}} \right]\)

    As the two matrices are equal, their corresponding elements are also equal.

    Comparing the corresponding elements:

    4k = 28 ⇒ k = 7

    ∴ The value of k is 7.

  • Question 5
    5 / -1
    If the matrix \(A=\begin{bmatrix}2-x&1&1\\\ 1&3-x&0\\\ -1&-3&-x\end{bmatrix}\) is singular, then what is the solution set S?
    Solution

    Concept Used:

    A matrix A is said to be singular if | A | = 0

    Calculation:

    \(A=\begin{bmatrix}2-x&1&1\\\ 1&3-x&0\\\ -1&-3&-x\end{bmatrix} \)

    ∣A∣ = 0 

    ⇒ \(\begin{vmatrix}2-x&1&1\\\ 1&3-x&0\\\ -1&-3&-x\end{vmatrix}\)= 0

    R2 → R2 + R3

    ⇒ \(\begin{vmatrix}2-x&1&1\\\ 0&-x&-x\\\ -1&-3&-x\end{vmatrix}\) = 0

    ⇒ (2 - x) (x2 - 3x) - 1[-x + x] = 0

    ⇒ (2 - x) x (x - 3) = 0

    ⇒ x = 0, 2, 3

    ⇒ S = {0, 2, 3}

    ∴  The solution set S = {0, 2, 3}

  • Question 6
    5 / -1
    If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = \(\left[ {\begin{array}{*{20}{c}} 2&3\\ 5&{ - 1} \end{array}} \right]\), then AB is equal to 
    Solution

    CONCEPT:

    If A is a symmetric matrix and B is a skew-symmetric matrix then,

    A = AT, B = - BT        ...(1)

    By the properties of the transpose of the matrix,

    (A + B)TAT + BT       ...(2)

    CALCULATION

    Given:

    A + B = \(\left[ {\begin{array}{*{20}{c}} 2&3\\ 5&{ - 1} \end{array}} \right]\)        ...(3)

    Using 2,

    ⇒ A' + B' = \(\left[ {\begin{array}{*{20}{c}} 2&5\\ 3&{ - 1} \end{array}} \right]\)

    Using equation 1,

    ⇒ A - B = \(\left[ {\begin{array}{*{20}{c}} 2&5\\ 3&{ - 1} \end{array}} \right]\)          ...(4) 

    After adding equations (i) and (ii)

    A = \(\left[ {\begin{array}{*{20}{c}} 2&4\\ 4&{ - 1} \end{array}} \right]\), B = \(\left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right]\)

    ⇒ AB = \(\left[ {\begin{array}{*{20}{c}} 4&{ - 2}\\ { - 1}&{ - 4} \end{array}} \right]\)

    • So, the correct answer is option 3.
  • Question 7
    5 / -1

    Which of the following statements is/are true

    If A and B are two skew-symmetric matrices of order n then

    1. A ⋅ B is a skew symmetric matrix when AB = - BA

    2. A ⋅ B is a symmetric matrix when AB = BA

    Solution

    Concept:

    • Symmetric Matrix: Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = A’ then A is said to be a symmetric matrix.
    • Skew-symmetric Matrix: Any real square matrix A = (aij) is said to be skew-symmetric matrix if and only if aij = - aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A =- A’ then A is said to be a skew-symmetric matrix.
    • (A ± B)' = A' ± B'
    • (A ⋅ B)' = B' ⋅ A'

    Calculation:

    Given: A and B are two skew-symmetric matrices of order n

    Statement 1:  A ⋅ B is a skew symmetric matrix when AB = - BA

    Let's find out transpose of (A ⋅ B)

    ⇒ (A ⋅ B)' = B' ⋅ A'

    ∵ A and B are two skew - symmetric matrices of order n i.e A' = -A and B' = -B

    ⇒(A ⋅ B)' = -B ⋅ -A

    ⇒ (A ⋅ B)' = B ⋅ A

    ⇒ (A ⋅ B)' = - (A ⋅ B)--------------(∵ AB = - BA)

    Hence, statement 1 is true.

    Statement 2: A ⋅ B is a symmetric matrix when AB = BA

    Let's find out transpose of (A ⋅ B)

    ⇒ (A ⋅ B)' = B' ⋅ A'

    ∵ A and B are two skew - symmetric matrices of order n i.e A' = -A and B' =- B

    ⇒(A ⋅ B)' = -B ⋅ -A

    ⇒ (A ⋅ B)' = B ⋅ A

    ⇒ (A ⋅ B)' = (A ⋅ B)--------------(∵ AB = BA)

    Hence, statement 2 is also true.

  • Question 8
    5 / -1
    If A = \(\left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right]\) is a symmetric matrix, then 3x + y is equal to?
    Solution

    CONCEPT:

    Symmetric Matrix:

    Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = At then A is said to be a symmetric matrix.

    Calculation:

    \(A = \left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right]\)

    A = At

     \( A^t=\left[ {\begin{array}{*{20}{c}} 1&{1 - x}&2\\ {3 + x}&2&{5 - y}\\ 2&{y + 1}&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right] = A\)

    On comparing 

    3 + x = 1 - x

    ⇒ x = - 1

    And, y + 1 = 5 - y

    ⇒ y = 2

    3x + y = 3(-1) + 2

    ∴ 3x + y = -1 

  • Question 9
    5 / -1
    If \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\), then find the value of x?
    Solution

    Concept:

    A × A-1 = I, where I is an identity matrix

    |A| = \(\rm 1\over {|A^{-1}|}\)

    Calculation:

    Given: \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\)

    |A-1| = \(\rm {4\over 72} - {1\over 72} = {3\over 72} = {1\over 24}\)

    |A| = \(\rm {1 \over {|A^{-1}|}}\) = 24

    ⇒ 3x - 8 = 24

    ∴ x = \(\rm 32\over 3\)

  • Question 10
    5 / -1
    If A, B are square matrices of the same order and B is a skew-symmetric matrix, then A′BA is:
    Solution

    Concept:

    Transpose of a Matrix:

    The new matrix obtained by interchanging the rows and columns of the original matrix is called as the transpose of the matrix.

    For example: \(\rm A=\begin{bmatrix} \rm a & \rm b &\rm c \\ \rm x & \rm y & \rm z \end{bmatrix}\Rightarrow A'=\begin{bmatrix} \rm a & \rm x \\ \rm b & \rm y \\ \rm c & \rm z \end{bmatrix}\).

    It is denoted by A' or AT.

     

    Properties of Transpose of a Matrix:

    • The transpose of the product of two matrices is equivalent to the product of their transposes in reversed order:

      (AB)' = B'A'

    • (ABC)' = C'B'A'

    • (A')' = A

     

    Calculation:

    It is given that B is a skew-symmetric matrix.

    ∴ B' = -B

    Now, consider the transpose of the product matrix A′BA.

    (A′BA)' = A'B'(A')'

    = A'(-B)A               [∵ B' = -B]

    = -(A'BA)

    Since the transpose is equal to its negative, A'BA is a Skew-Symmetric matrix.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now