Self Studies
Selfstudy
Selfstudy

Mathematics Test - 29

Result Self Studies

Mathematics Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    Which among the following is the standard deviation of Binomial distribution?
    Solution

    Concept:

    We know Binomial distribution is:

    \({\left( {q + p} \right)^n} = \sum {n_{{C_r}}}{q^{n - r}}{p^r}\)

    where p + q = 1

    p is the probability of getting success and q is the probability of failure

    • Mean of Binomial distribution is np
    • Variance is npq.
    • Standard deviation is given by the square root of the variance, as:

              \(S.D.=\;\sqrt {Variance} = \sqrt {npq} \) 

  • Question 2
    5 / -1
    Find the mean of the Binomial distribution if n = 10, p = 4/5, q = 1/5
    Solution

    Concept:

    Binomial distribution: 

    If a random variable X has binomial distribution as B (n, p) with n and p as parameters, then the probability of random variable is given as:

    P( X = k) = nCpk q(n - k) 

    Where q = p - 1

    n is the number of observations,

    p is the probability of success & q is the probability of failure.

    Note: The mean of a binomial distribution is np and variance is npq.

    Calculation:

    Given:

    n = 10, p = 4/5, q = 1/5

    As we know,

    The mean of a binomial distribution = np

    \(\rm ⇒Mean = 10 \times \frac{4}{5}=8\)

    Hence, the correct option is 2.

  • Question 3
    5 / -1

    Find the expected value of a random variable which has the following probability distribution?

    X:246810
    P:0.10.30.40.10.1
    Solution

    Calculation

    We know expected value of random variable

    f(x) = ∑xipi

    where I = 1, 2, 3,-----n

    f(x) = P1x1 + P2x2 + P3x3 + P4x4 + P5x5

    ⇒ f(x) = 0.1 × 2 + 0.3 × 4 + 0.4 × 6 + 0.1 × 8 + 0.1 × 10

    ⇒ 0.2 + 1.2 + 2.4 + 0.8 + 1

    f(x) = 5.6

  • Question 4
    5 / -1

    The values of c for which the function f(x) is a p.d.f. is?

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{c}{{\sqrt x }},}&{0 < x < 4}\\ {0,}&{otherwise} \end{array}} \right.\)

    Solution

    Concept: 

    To analyze the Random Variable ‘x’ two functions are used.

    1) PDF (Probability Distribution Function)

    2) pdf (Probability Density Function)

    CDF and pdf are related as:

    \(CDF = \mathop \smallint \limits_{ - \infty }^\infty PDFdx\)  ----(1)

    Properties of a valid PDF:

    1) \({f_X}\left( x \right) \ge 0,\;\forall \;x\;\epsilon\;R\)

    ∴ CDF will be bounded between 0 and 1

    2) \(\mathop \smallint \limits_{ - \infty }^\infty {f_X}\left( x \right)dx = {P_X}\left( \infty \right) = 1\)      ----(2)

    Here PX is CDF

    \({P_X}\left( \infty \right) = \begin{array}{*{20}{c}} {{\rm{lim}}}\\ {x \to \infty } \end{array}{P_X}\left( x \right)\)

    ∴ CDF will always be a monotonically increasing function as the probability is always greater than or equal to 0. 

    Calculation:

    Given:

    \(\rm PDF \ = \ f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{c}{{\sqrt x }},}&{0 < x < 4}\\ {0,}&{otherwise} \end{array}} \right.\)

    Using Equation  (2):

    \(\mathop \smallint \limits_{ 0 }^4 {\frac{c}{\sqrt{x}}}dx=1\)

    \([2c\sqrt{x}]^{4}_{0}=1 \)

    4c = 1

    \(c=\frac{1}{4}\)

    Hence option (3) is the correct answer.

  • Question 5
    5 / -1
    A fair six-sided die is rolled, with X being the number on the uppermost face. The expectation of X is:
    Solution

    Formula:

    E(X) = μx = μ

    ⇒ μ = ∑ xifi = ∑xiP(X = xj)

    Calculation

    X

    P(X)

    1

    1/6

    2

    1/6

    3

    1/6

    4

    1/6

    5

    1/6

    6

    1/6


    E(X) = μx = μ

    ⇒ μ = ∑ xifi = ∑xiP(X = xj)

    ⇒ 1 × 1/6 + 2 × 1/6 + 3 × 1/6 + 4 × 1/6 + 5 × 1/6 + 6 × 1/6

    ⇒ (1/6)(1 + 2 + 3 + 4 + 5 + 6)

    ⇒ 7/2

  • Question 6
    5 / -1
    Let the random variables X follow B (6, p) If \(16{\rm{\;P\;}}\left( {{\rm{X}} = 4} \right) = {\rm{P\;}}\left( {{\rm{X}} = 2} \right)\), then what is the value of p
    Solution

    Concept:

    Binomial distribution: If a random variable X has binomial distribution as B (n, p) with n and p as parameters, then the probability of random variable is given as:

    \({\rm{P\;}}\left( {{\rm{X}} = {\rm{k}}} \right) = \left( {\begin{array}{*{20}{c}} {\rm{n}}\\ {\rm{k}} \end{array}} \right){\rm{\;}}{{\rm{p}}^{\rm{k}}}{\rm{\;}}{\left( {1 - {\rm{p}}} \right)^{{\rm{n}} - {\rm{k}}}}\)

    Where, n is number of observations, p is the probability of success.

    Formulas used:

    • Calculate combination:

    \(\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) = \frac{{n!}}{{\left( {n - k} \right)!k!}}\)

    • Factorial:

    \(n! = 1 \times 2 \times 3 \times \ldots . \times \left( {n - 1} \right) \times n\)

    Calculation:

    Given: \(16\;P\;\left( {X = 4} \right) = P\;\left( {X = 2} \right)\)

    To find the value of p

    Calculating probabilities of random variable X,

    \(P\;\left( {X = 4} \right) = \left( {\begin{array}{*{20}{c}} 6\\ 4 \end{array}} \right)\;{p^4}\;{\left( {1 - p} \right)^2}\)

    \(P\;\left( {X = 2} \right) = \left( {\begin{array}{*{20}{c}} 6\\ 2 \end{array}} \right)\;{p^2}\;{\left( {1 - p} \right)^4}\)

    Given,

    \(16{\rm{\;P\;}}\left( {{\rm{X}} = 4} \right) = {\rm{P\;}}\left( {{\rm{X}} = 2} \right)\)

    \( \Rightarrow 16\left( {\begin{array}{*{20}{c}} 6\\ 4 \end{array}} \right)\;{p^4}\;{\left( {1 - p} \right)^2} = \left( {\begin{array}{*{20}{c}} 6\\ 2 \end{array}} \right)\;{p^2}\;{\left( {1 - p} \right)^4}\)

    \(\Rightarrow 16 \times \frac{{6!}}{{2!4!}}\;{p^4}\;{\left( {1 - p} \right)^2} = \frac{{6!}}{{2!4!}}\;{p^2}\;{\left( {1 - p} \right)^4}\)

    \(\Rightarrow 16\;{p^2} = {\left( {1 - p} \right)^2}\)

    \(\Rightarrow \pm 4p = 1 - p\)

    \( \Rightarrow p = \frac{1}{5}\) or \(p = - \frac{1}{3}\)

    Hence,\({\rm{p}} = \frac{1}{5}\)

  • Question 7
    5 / -1
    In an examination, the probability of a candidate solving a question is 1/2. out of given 5 questions in the examination, what is the probability that the candidate was able to solve at least 2 questions?
    Solution

    Concept:

    • \(P(X=r)=n_{c_{r}}(p)^{r}(q)^{n-r}\)
    • Required probability = 1 - Not required probability

     

    Calculation:

    Here number of attempt (n) = 5

    p = 1/2 and q = 1/2

    P(X is greater than equal to 2) = 1 - P (X < 2) = 1 - P(X = 0) - P(X = 1)

    ∴ Required probability = 1 - P(X = 0) - P(X = 1)

     \(\begin{array}{l} \quad 1-{ }^{5} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5}-{ }^{5} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4} \\ \Rightarrow 1-\left(\frac{1}{2}\right)^{5}-5\left(\frac{1}{2}\right)^{5} \\ \Rightarrow 1-\left(\frac{1}{2}\right)^{5}[1+5] \\ \Rightarrow 1-\frac{6}{32} \\ \Rightarrow \frac{13}{16} \end{array}\)

    Hence, option (4) is correct. 

  • Question 8
    5 / -1

    The random variable X has a probability density function as given by

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {3{x^2},\;\;0 \le x \le 1}\\ {0,\;\;otherwise} \end{array}} \right.\)

    The value E(X2) will be?
    Solution

    Concept:

    The mean value of (μ) of the probability distribution of a variate X is commonly known as expectation and it is denoted by E[X].

    If f(x) is the probability density function of the variate X, then

    Discrete distribution: \(E\left[ X \right] = \mathop \sum \limits_i {x_i}f\left( {{x_i}} \right)\)

    Continuous distribution: \(E\left( X \right) = \mathop \smallint \limits_{ - \infty }^\infty xf\left( x \right)dx\)

    Calculation:

    \(E\left( {{X^2}} \right) = \mathop \smallint \limits_0^1 {x^2}\left( {3{x^2}} \right)dx\)

    \( = \mathop \smallint \limits_0^1 3{x^4}dx = \left[ {\frac{{3{x^5}}}{5}} \right]_0^1 = \frac{3}{5}\)
  • Question 9
    5 / -1
    If x is a random variable with the expected value of 5 and the variance of 1, then the expected value of x2 is
    Solution

    Concept:

    For any random variable x the variance of x is the expected value of the squared difference between x and its expected value, i.e.

    Var(x) = E(x2) - (E(x))2

    E(x2) = Var(x) + (E(x))2

    Where, E(x2) = Expected squared value; E(x) = Expected value;

    Calculation:

    Given:

    Var(x) = 1; E(x) = 5;

    E(x2) = Var(x) + (E(x))2 = 1 + (5)2

    E(x2) = 26

  • Question 10
    5 / -1
    The mean and the variance in a binomial distribution are found to be 2 and 1 respectively. The probability P(X = 0) is
    Solution

    Concept:

    • Mean = np
    • Variance = npq 
    • \(P(X=r)=n_{c_{r}}(p)^{r}(q)^{n-r}\)

     

    Calculation:

    Here, mean = np = 2 and 

    Variance = npq = 1

    (npq)/(np) = 1/2

    ⇒ q = 1/2

    Now, p + q = 1

    ∴ p = 1/2

    n(1/2) = 2   (∵ np = 2)

    ⇒ n = 4

    \(P(X=r)=n_{c_{r}}(p)^{r}(q)^{n-r}\)

    \(\begin{aligned} P(x=0) &={ }^{4} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4} \\ &=(1)(1)\left(\frac{1}{16}\right) \\ &=\left(\frac{1}{16}\right) \end{aligned}\)

    Hence, option (4) is correct. 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now