Concept:
Binomial distribution: If a random variable X has binomial distribution as B (n, p) with n and p as parameters, then the probability of random variable is given as:
\({\rm{P\;}}\left( {{\rm{X}} = {\rm{k}}} \right) = \left( {\begin{array}{*{20}{c}} {\rm{n}}\\ {\rm{k}} \end{array}} \right){\rm{\;}}{{\rm{p}}^{\rm{k}}}{\rm{\;}}{\left( {1 - {\rm{p}}} \right)^{{\rm{n}} - {\rm{k}}}}\)
Where, n is number of observations, p is the probability of success.
Formulas used:
\(\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) = \frac{{n!}}{{\left( {n - k} \right)!k!}}\)
\(n! = 1 \times 2 \times 3 \times \ldots . \times \left( {n - 1} \right) \times n\)
Calculation:
Given: \(16\;P\;\left( {X = 4} \right) = P\;\left( {X = 2} \right)\)
To find the value of p
Calculating probabilities of random variable X,
\(P\;\left( {X = 4} \right) = \left( {\begin{array}{*{20}{c}} 6\\ 4 \end{array}} \right)\;{p^4}\;{\left( {1 - p} \right)^2}\)
\(P\;\left( {X = 2} \right) = \left( {\begin{array}{*{20}{c}} 6\\ 2 \end{array}} \right)\;{p^2}\;{\left( {1 - p} \right)^4}\)
Given,
\(16{\rm{\;P\;}}\left( {{\rm{X}} = 4} \right) = {\rm{P\;}}\left( {{\rm{X}} = 2} \right)\)
\( \Rightarrow 16\left( {\begin{array}{*{20}{c}} 6\\ 4 \end{array}} \right)\;{p^4}\;{\left( {1 - p} \right)^2} = \left( {\begin{array}{*{20}{c}} 6\\ 2 \end{array}} \right)\;{p^2}\;{\left( {1 - p} \right)^4}\)
\(\Rightarrow 16 \times \frac{{6!}}{{2!4!}}\;{p^4}\;{\left( {1 - p} \right)^2} = \frac{{6!}}{{2!4!}}\;{p^2}\;{\left( {1 - p} \right)^4}\)
\(\Rightarrow 16\;{p^2} = {\left( {1 - p} \right)^2}\)
\(\Rightarrow \pm 4p = 1 - p\)
\( \Rightarrow p = \frac{1}{5}\) or \(p = - \frac{1}{3}\)
Hence,\({\rm{p}} = \frac{1}{5}\)