Self Studies
Selfstudy
Selfstudy

Mathematics Test - 3

Result Self Studies

Mathematics Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1

    Which of the following statements is/are true:

    I. A X = 0, always have a solution.

    II. It is not necessary that  A X = 0, will always have a solution.
    Solution

    Concept:

    The system of equations A X = 0 is said to be homogenous system of equations, then

    If |A| ≠ 0, then its solution X = 0, is called trivial solution.

    If |A| = 0. Then A X = 0 has a non-trivial solution which means the system will have infinitely many solutions.

  • Question 2
    5 / -1

    2x – 3y = 0 and 2x + αy = 0

    For what value of α the system has unique solution.

    Solution

    Concept:

    The system of equations A X = 0 is said to be homogenous system of equations, then

    If |A| ≠ 0, then its solution X = 0, is called trivial solution.

    If |A| = 0. Then A X = 0 has a non-trivial solution which means the system will have infinitely many solutions.

    Calculation:

    Given:  2x – 3y = 0 and 2x + αy = 0

    These equations can be written as: A X = B where \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}\\ 2&\alpha \end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right]\;and\;B = \left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

    As we know that, the given system is a homogenous system of equation. So, in order to say that the system has unique solution: |A| ≠ 0.

    ⇒ |A| = 2α + 6 ≠ 0 ⇒ α ≠ -3.

  • Question 3
    5 / -1

    Consider the below statements -

    (i) For a matrix system AX = B, there will be a unique solution only iff |A| ≠ 0.

    (ii) A system of equations will always be inconsistent if |A| = 0.

    (iii) If |A| = 0 and (adjA)B = 0, then the system will have infinite solutions.

    (iv) For consistency |A| will always be non-zero. 

    Then which of the following statements are true?

    Solution

    Explanation:

    • A matrix system AX = B will always have a unique solution if A is non-singular or |A| ≠ 0. (Option 1 is true)
    • A matrix system AX = B will always be inconsistent if |A| = 0 but (adjA)B ≠ 0 and consistent if |A| = 0 and (adjA)B = 0 and in this case there will be infinite number of solution (Option 2 is false and Option3 is true)
    • |A| ≠ 0 is not the only condition for consistency, a matrix system AX = B will also be consistent if |A| = 0 and (adjA)B = 0 (Option 4 is false)

    So, the correct answer is option 1.

  • Question 4
    5 / -1
    For what value of α, the system of equation: x + y + z = 0, x – y + z = 0 and 2x + 3y + αz = 0 has infinitely many solutions.
    Solution

    Concept:

    Let us consider a system of equations in three variables:

    a1 × x + b1 × y + c1 × z = d1

    a2 × x + b2 × y + c2 × z = d2

    a3 × x + b3 × y + c3 × z = d3

    Then, \({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|\)

    By cramer’s rule:

    I. If Δ ≠ 0, then the system of equation has unique solution and it is given by: \(x = \frac{{{{\rm{\Delta }}_1}}}{{\rm{\Delta }}},\;y = \frac{{{{\rm{\Delta }}_2}}}{{\rm{\Delta }}}\;and\;z = \frac{{{{\rm{\Delta }}_3}}}{{\rm{\Delta }}}\)

    II. If Δ = 0 and atleast one of the determinants Δ, Δ1, Δ2 and Δ3 is non-zero, then the given system is inconsistent.

    III. If Δ = 0 and Δ1 =  Δ2 =  Δ3 = 0, then the system is consistent and has infinitely many solutions.

    Calculation:

    Given: x + y + z = 0, x – y + z = 0 and 2x + 3y + αz = 0

    As we know that,

    \({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|\)

     

    \( \Rightarrow {\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 2&3&\alpha \end{array}} \right|,\;{{\rm{\Delta }}_1} = \;\left| {\begin{array}{*{20}{c}} 0&1&1\\ 0&{ - 1}&1\\ 0&3&\alpha \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} 1&0&1\\ 1&0&1\\ 2&0&\alpha \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} 1&1&0\\ 1&{ - 1}&0\\ 2&3&0 \end{array}} \right|\)

    As we know that, for the given system of equation to have infinitely many solution according to cramer’s rule: Δ = 0 and Δ1 =  Δ2 =  Δ3 = 0.

    We can see that, Δ1 =  Δ2 =  Δ3 = 0 ∵ they contain one column with all entries 0.

    So, we need to make Δ = 0.

    ⇒ Δ = - 2α + 4 = 0 ⇒ α = 2.

    Hence, for α = 2 the given system has infinitely many solutions.
  • Question 5
    5 / -1
    A non-singular matrix M = \(\begin{bmatrix} 3 & 6 & 9\\6 & 9 & 12\\9 & 12 & 18\end{bmatrix}\) is such that M-1 = \(\begin{bmatrix} -2/3 & 0 & 1/3\\0 & 1 & -2/3\\ 1/3& -2/3 & 1/3\end{bmatrix}\) . If the system of equations x + 2y + 3z = 5, 2x + 3y + 4z = 7, 3x + 4y + 6z = 11 has a unique solution then xyz = ?
    Solution

    Concept:

    A matrix system of form AX = B has a unique solution X A-1B  if |A| ≠ 0

    (kA)-1 = (1/k)A

    Calculation:

    Given:

    M = \(\begin{bmatrix} 3 & 6 & 9\\6 & 9 & 12\\9 & 12 & 18\end{bmatrix}\) and  M-1 = \(\begin{bmatrix} -2/3 & 0 & 1/3\\0 & 1 & -2/3\\ 1/3& -2/3 & 1/3\end{bmatrix}\)

    • The system of equations x + 2y + 3z = 5, 2x + 3y + 4z = 7, 3x + 4y + 6z = 11 has a unique solution.
    • So, we can write this as AX = B Where,

    A = \(\begin{bmatrix} 1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{bmatrix}\)B = \(\begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix} \), X = \(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \)

    By the property of the matrices,

    ⇒ M = 3\(\begin{bmatrix} 1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{bmatrix}\) 

    ⇒ M-1 = (1/3)\(\begin{bmatrix} 1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{bmatrix} ^{-1}\)

    ⇒ \(\begin{bmatrix} 1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{bmatrix} ^{-1}\)= 3 × M-1   

    = 3\(\begin{bmatrix} -2/3 & 0 & 1/3\\0 & 1 & -2/3\\ 1/3& -2/3 & 1/3\end{bmatrix}\) 

    \(\begin{bmatrix} -2 & 0 & 1\\0 & 3 & -2\\ 1& -2 & 1\end{bmatrix}\)

    X = A-1B

    ⇒ X = \(\begin{bmatrix} 1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{bmatrix} ^{-1}\)\(\begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix} \)

    ⇒ X \(\begin{bmatrix} -2 & 0 & 1\\0 & 3 & -2\\ 1& -2 & 1\end{bmatrix}\)\(\begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix} \)

    \(\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \)

    ∴ x = 1, y = -1, z = 2

    ∴ xyz = -2

  • Question 6
    5 / -1

    Consider the given system of simultaneous linear equations -

    x + ωy + ω2z = 0

    ωx + ω2y + z = 0

    ω2x + y + ωz = 0

    where ω is a complex cube root of unity. Then the system of equations has  

    Solution

    Concept:

    • The system of linear equations has a unique solution if D ≠ 0.
    • The system of linear equations has infinite solutions if D = 0, D1 = 0, D2 = 0, D3 = 0.
    • The system of linear equations has no solution if D = 0 and at least one of D1D2, and D3 is not zero.

    For a homogeneous system -

    • If D ≠ 0, then only trivial solution x = y = z =0.
    • If D = 0, then infinite solutions are there.

    Calculation:

    Given:

    x + ωy + ω2z = 0 

    ωx + ω2y + z = 0

    ω2x + y + ωz = 0

    Where ω is a complex cube root of unity

    The given system is homogeneous.

    D = \(\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2& 1 \\\omega^2 & 1 &\omega\end{vmatrix} \)

    Applying C1 → C1 + C2 + C3

    ⇒ D = \(\begin{vmatrix} 1+\omega +\omega^2 & \omega & \omega^2 \\ 1+\omega +\omega^2 & \omega^2& 1 \\1+\omega +\omega^2 & 1 &\omega\end{vmatrix} \)

    ∵ 1 + ω + ω= 0

    ⇒  D = \((1+\omega+\omega^2)\begin{vmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2& 1 \\1 & 1 &\omega\end{vmatrix} \)

     

    ⇒ D = 0 , Hence infinite solutions.

  • Question 7
    5 / -1
    If the system of equations px - 2y - pz = 0, 2x + py - pz = 0, -px + py + 2z = 0 has a non-trivial solution, then the sum of the possible values of p is
    Solution

    Concept:

    For a homogeneous system -

    •  If D ≠ 0, then only trivial solution x = y = z =0.
    •  If D = 0, then infinite solutions are there.

    Where D is the determinant of matrices formed by the coefficient of x, y, and z out of the given three equations and D1 is calculated by replacing the first column with constant terms of the given equation.

    Calculation:

    Given:

    The system of equations px - 2y - pz = 0, 2x + py -pz = 0, -px + py + 2z = 0 has a non-trivial solution.

    If there is a non-trivial solution, ∴ D must be zero.

    ⇒ D = 0

    ⇒ \(\begin{vmatrix} p & -2 & -p\\ 2 & p & -p \\ -p & p & 2\end{vmatrix} \) = 0

    ⇒ p(p × 2 - (-p) × p) - (-2)(2 × 2 - (-p) × (-p)) + (-p)(2 × p - (-p) × p) = 0

    ⇒ -2p2 + 8 = 0

    ⇒ p= 4

    ⇒ p = ± 2 

    ∴ sum of possible values = 2 + (-2) =0

  • Question 8
    5 / -1
    For what values of k is the system of equations 2k2x + 3y - 1 = 0, 7x - 2y + 3 = 0, 6kx + y + 1 = 0 consistent?
    Solution

    Concept:

    Consider three linear eqaution in two variable:

    a1x + b1y + c1 = 0

    a2x + b2y + c2 = 0

    a3x + b3y + c3 = 0

    Condition for the consistency of three simultaneous linear equations in 2 variables:

    ​​​​\( \left| {\begin{array}{*{20}{c}} a_1&b_1&c_1\\ a_2&b_2&c_2\\ a_3&b_3&c_3 \end{array}} \right|=0\)

    Formula for Quadratic equation:

    ax2 + bx + c = 0

    x = \(\rm \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

    Calculation:

    2k2x + 3y - 1 = 0      ....(1)

    7x - 2y + 3 = 0      ....(2)

    6kx + y + 1 = 0      ....(3)

    For consistency of given simultaneous equation,

    \( \left| {\begin{array}{*{20}{c}} 2k^2&3&-1\\ 7&-2&3\\ 6k&1&1 \end{array}} \right|=0\)

    ⇒ 2k2(-2- 3) - 3(7 - 18k) - 1(7 + 12k) = 0

    ⇒ -10k2 - 21 + 54k - 7 - 12k = 0

    ⇒ -10k2 + 42k - 28 =  0

    5k2 - 21k + 14 =  0

    By using the formula,

    \(x=\rm \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

    \(\Rightarrow k=\rm \frac{-(-21) \pm \sqrt{(-21)^{2} - 4(5)(14)}}{2\times 5}\)

    \(\therefore k=\rm \frac{21 \pm \sqrt{161}}{10}\)

  • Question 9
    5 / -1
    The given system of equations kx + 5y + 3z = 1, x + 3y + 2z = 3, x + 2y + z = 3 has no solution for -
    Solution

    Given:

    kx + 5y + 3z = 1

    x + 3y + 2z = 3

    x + 2y + z = 3

    Concept:

    The system of linear equations has a unique solution if D ≠ 0.

    The system of linear equations has infinite solutions if D = 0, D1 = 0, D2 = 0, D3 = 0.

    The system of linear equations has no solution if D = 0 and at least one of D1, Dand D3 is not zero.

    Where D is the determinant of matrices formed by the coefficient of x, y, and z out of the given three equations and D1 is calculated by replacing the first column with constant terms of the given equation.

    Calculation:

    D = \(\begin{vmatrix} k & 5 & 3\\ 1 & 3 & 2 \\ 1 & 2 & 1\end{vmatrix} \)

    ⇒ D = k(3 × 1 - 2 × 2) - 5(1 × 1 - 1 × 2) + 3(1 × 2 - 1 × 3)

    ⇒ D = - k +2

    Similarly we can check D1 ≠ 0

    D\(\begin{vmatrix} 1 & 5 & 3\\ 3 & 3 & 2 \\ 3 & 2 & 1\end{vmatrix} \)

    ⇒ D1 = 1(3 × 1 - 2 × 2) - 5(3 × 1 - 3 × 2) + 3(3 × 2 - 3 × 3)

    = 5 ≠ 0

    Now for no solution, D = 0 and atleast one of D1, Dand D3 is not zero. 

    ⇒ -k + 2 = 0

    ⇒ k = 2

  • Question 10
    5 / -1
    The system of equations kx + y + z = 1, x + ky + z = k and x + y + kz = k2 has no solution if k equals
    Solution

    Concept

    Let the system of equations be,

    a1x + b1y + c1z = d1

    a2x + b2y + c2z = d2

    a3x + b3y + c3z = d3

    \(\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{d_1}}\\ {{d_2}}\\ {{d_3}} \end{array}} \right]\)

    ⇒ AX = B

    ⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}\;B\)

    ⇒ If det (A) ≠ 0, the system is consistent having unique solution.

    ⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

    ⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

    Calculation:

    Given: 

    kx + y + z = 1, x + ky + z = k and x + y + kz = k2

    \( \Rightarrow {\rm{A}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right],{\rm{B}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]{\rm{and\;C}} = \left[ {\begin{array}{*{20}{c}} 1\\ {\rm{k}}\\ {{{\rm{k}}^2}} \end{array}} \right]\)

    ⇒ For the given equations to have no solution, |A| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right| = 0\)

    ⇒ k(k2 – 1) - 1(k – 1) + 1(1 – k) = 0

    ⇒ k3 – k – k + 1 + 1 – k = 0

    ⇒ k3 -3k +2 = 0

    ⇒ (k – 1) (k – 1) (k + 2) = 0

    ⇒ k = 1, -2

    If we put k = 1 in the above given equations, then all the equations will become the same.

    Hence, the given equations have no solution if k = - 2. 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now