Concept:
A function f(x) has extremum when f ' (x) = 0
And the extremum is maximum point, when,
f ' (x) = 0 and f " (x) < 0
And the extremum is minimum point, when,
f ' (x) = 0 and f " (x) > 0
Calculation:
Given, \(f(x)=\frac{x}{1+x \tan x}\)
⇒ f ' (x) = \({1(1+ x. tan\ x) - x(0 + tan \ x + x sec^2 x)\over (1+ xtan x)^2 }\)
⇒ f ' (x) = \({(1+ x. tan\ x) - x tan \ x - x ^2sec^2 x\over (1+ xtan x)^2 }\)
⇒ f ' (x) = \({1 - x ^2sec^2 x\over (1+ xtan x)^2 }\) ___(i)
And f ' (x) = 0
⇒ 1 - x2sec2x = 0
⇒ x2 = cos2x
⇒ x = cos x in (0, π/2).
Which has only one root in (0, π/2).
⇒ f(x) has only one extremum point.
And, differentiating equation (i),
f " (x) = \({( -2 xsec^2 x -x ^2 2sec^2 x \tan x)(1+xtan x)^2 - (1 - x ^2sec^2 x)2(1+x tan x)(tanx + x sec ^2 x)\over (1+ xtan x)^4 }\)
f "(x) = \((1+x tan x){ -2 xsec^2 x(1+x \tan x)(1+xtan x) - (1 - x ^2sec^2 x)(2tanx + x sec ^2 x)\over (1+ xtan x)^4 }\)
⇒ f "(x) = \({ -2 xsec^2 x(1+x \tan x)^2- (1 - x ^2sec^2 x)(2tanx + x sec ^2 x)\over (1+ xtan x)^3 }\)
when x = cos x
⇒ f "(x) = \({ -2 sec x(1+\sin x)^2- (1 - 1)(2tanx + x sec ^2 x)\over (1+ sin x)^3 }\)
⇒ f "(x) = \({ -2 sec x(1+\sin x)^2\over (1+ sin x)^3 }\) < 0 in (0, π/2).
⇒ f(x) has one maximum point.
∴ The correct answer is option (2).