Self Studies
Selfstudy
Selfstudy

Mathematics Test - 6

Result Self Studies

Mathematics Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    Find the value of b if \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)
    Solution

    Concept:

    \(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)

    Calculation:

    Given: \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)

    Using the formula, 

    \(\rm \int \frac{dx}{\sqrt {a^{2}-x^{2}}}=sin^{-1}\frac{x}{a}+C\)

    \(\rm \Rightarrow \int \frac{dx}{\sqrt {9-x^{2}}}=\int \frac{dx}{\sqrt {3^{2}-x^{2}}}=sin^{-1}\frac{x}{3}+C\)     -----(1)

    ∵ It is given that, \(\rm \int \frac{dx}{\sqrt {9-x^{2}}}=sin^{-1}\frac{x}{b}+C\)-     ----(2)

    On comparing (1) and (2) we get b = 3.

    Hence, the correct answer is option 2.

  • Question 2
    5 / -1

    Find the antiderivative of f(x) = 12x3 – 15x2 + 64

    Solution

    Given, f(x) = 12x 3 – 15x2 + 64

    Antiderivative of f(x) is F(x) + C, where C is a constant.

    \(F\left( x \right) = \smallint 12{{\rm{x}}^3}{\rm{}}-{\rm{}}15{{\rm{x}}^2}{\rm{}} + {\rm{}}64dx = \frac{{12{x^4}}}{4} - \frac{{15{x^3}}}{3}+ 64x + C = 3{x^4} - 5{x^3} + 64x + C\)

  • Question 3
    5 / -1
    \(\rm \int \sqrt {x^2+2x+5}\ dx\) is equal to:
    Solution

    Concept:

    \(\rm \int \sqrt {x^2+a^2}\ dx=\frac{x}{2}\sqrt {x^2+a^2}+\frac{a^2}{2}\log\left|x+\sqrt {x^2+a^2}\right|+C\).

     

    Calculation:

    Let I = \(\rm \int \sqrt {x^2+2x+5}\ dx\)

    \(\rm \int \sqrt {x^2+2x+1+4}\ dx\)

    \(\rm \int \sqrt {(x+1)^2+2^2}\ dx\)

    Using \(\rm \int \sqrt {x^2+a^2}\ dx=\frac{x}{2}\sqrt {x^2+a^2}+\frac{a^2}{2}\log\left|x+\sqrt {x^2+a^2}\right|+C\), we get:

    \(\rm \frac{x+1}{2}\sqrt {x^2+2x+5}+\frac{2^2}{2}\log\left|x+1+\sqrt {x^2+2x+5}\right|+C\)

    \(\rm \frac{1}{2}\left( {x + 1} \right)\sqrt {{x^2} + 2x + 5} + 2\log \left| {x + 1 + \sqrt {{x^2} + 2x + 5} } \right| + C\)

  • Question 4
    5 / -1
    Evaluate: \(\smallint \frac{{dx}}{{{e^x} - 1}}\)
    Solution

    Concept:

    Partial Fraction:

    Factors in the denominator

    Corresponding Partial Fraction

    (x - a)

    \(\frac{A}{{x - a}}\)

    (x – b)2

    \(\frac{A}{{x - b}} + \frac{B}{{{{\left( {x - b} \right)}^2}}}\)

    (x - a) (x – b)

    \(\frac{A}{{\left( {x - a} \right)}} + \frac{B}{{\left( {x - b} \right)}}\)

    (x – c)3

    \(\frac{A}{{x - c}} + \frac{B}{{{{\left( {x - c} \right)}^2}}} + \frac{C}{{{{\left( {x - c} \right)}^3}}}\)

    (x – a) (x2 – a)

    \(\frac{A}{{\left( {x - a} \right)}} + \frac{{Bx + C}}{{\left( {{x^2} - a} \right)}}\)

    (ax2 + bx + c)

    \(\frac{{Ax + B}}{{\left( {a{x^2} + bx + c} \right)}}\)

    Calculation:

    Here we have to find the value of \(\smallint \frac{{dx}}{{{e^x} - 1}}\)

    Let ex = t and by differentiating ex = t with respect to x we get

    ⇒ ex dx = dt or dx = dt/ex = dt/t

    \(⇒ \smallint \frac{{dx}}{{{e^x} - 1}} = \;\smallint \frac{{dt}}{{t\left( {t - 1} \right)}}\)

    Let \(\frac{1}{{t\left( {t - 1} \right)}} = \frac{A}{t} + \frac{B}{{t - 1}}\)

    ⇒ 1 = A (t - 1) + B t ---------(1)

    By putting t = 0 on both the sides of (1) we get A = - 1

    By putting t = 1 on both the sides of (1) we get B = 1

    \(\Rightarrow \frac{1}{{t\left( {t - 1} \right)}} = \frac{{ - 1}}{t} + \frac{1}{{t - 1}}\)

    \(\Rightarrow \smallint \frac{{dt}}{{t\left( {t - 1} \right)}} = \; - \;\smallint \frac{{dt}}{t} + \;\smallint \frac{{dt}}{{t - 1}}\)

    As we know that \(\smallint \frac{{dx}}{x} = \log \left| x \right|\; + C\)  where C is a constant

     \(\Rightarrow \smallint \frac{{dt}}{{t\left( {t - 1} \right)}} = \; - \log \left| t \right| + \log \left| {t - 1} \right| + C\)

    \(= \log \left| {\frac{{t - 1}}{t}} \right| + C\)

    By substituting  ex = t in the above equation we get

    \(\Rightarrow \smallint \frac{{dx}}{{{e^x} - 1}} = \log \left| {\frac{{{e^x} - 1}}{{{e^x}}}} \right| + C\)

  • Question 5
    5 / -1
    Find the \(\smallint \frac{2}{{{\rm{sin}}2{\rm{x}}.{\rm{log}}\left( {{\rm{tanx}}} \right)}}\)
    Solution

    Concept:

    sin 2x = 2sin x cos x

    ∫(1/x)dx = log x + c

    ∫tanx dx = sec2x + c  

    Calculation:

    Let I = \(\smallint \frac{2}{{\sin 2{\rm{x}}.\log \left( {{\rm{tanx}}} \right)}}\)         ....(1)

    Take log (tan x) = t

    \(\rm \frac1 {\tan x}(se{c^2}x)dx = dt\)

    ⇒ \( \frac{{{\rm{cosx}}}}{{{\rm{sinx}}.{\rm{\;co}}{{\rm{s}}^2}{\rm{x}}}}{\rm{\;dx}} = {\rm{dt}}\)

    ⇒ \( \frac{1}{{{\rm{sinx}}.{\rm{cosx}}}}{\rm{dx}} = {\rm{dt}}\)

    ⇒ dx = sin x.cos x dt

    Putting the value of log (tan x) and dx in equation (i)

    Now, I = \(\rm \smallint \frac{2}{{2sinx.cosx.t}}\;sinx.cosx\;dt\)

    = ∫ \(\rm \frac 1 t\)dt

    = log t + c

    = log [log(tan x) ]+ c

  • Question 6
    5 / -1

    Evaluate \(\smallint {e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)dx\)

    Solution

    \(I = \smallint {e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)dx\)

    \(Let\;I' = \smallint {e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx = \smallint {e^x}f\left( x \right)dx + \smallint {e^x}f'\left( x \right)dx\)

    Integration by Parts of first term:

    \(\smallint f\left( x \right)g\left( x \right)dx\; = \;f\left( x \right)\smallint g\left( x \right)dx - \smallint \left[ {f'\left( x \right)\smallint g\left( x \right)dx} \right]dx\)

    Where f is first function and g is second function.

    Preference order generally adopted for the selection of the first function: ILATE (Inverse, Logarithmic, Algebraic, Trigonometric, Exponent)

    f = f(x); g = ex

    \(I' = \;\left\{ {f\left( x \right)\smallint {e^x}dx - \smallint f'\left( x \right)\left[ {\smallint {e^x}dx} \right]dx} \right\} + \smallint {e^x}f'\left( x \right)dx\)

    \(I' = \;\left\{ {{e^x}f\left( x \right) - \smallint {e^x}f'\left( x \right)dx} \right\} + \smallint {e^x}f'\left( x \right)dx = {e^x}f\left( x \right)\)

    \(\therefore \smallint {e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx = {e^x}f\left( x \right) + c\)

    Here \(f\left( x \right) = \;\frac{1}{x};f'\left( x \right) = - \frac{1}{{{x^2}}}\)

    \(I = \smallint {e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)dx = \frac{{{e^x}}}{x} + c\)

  • Question 7
    5 / -1
    If \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C, where 0 < x < \(\frac{\pi}{4}\), then which one of the following is correct?
    Solution

    Concept:

    sin2x + cos2x = 1

    \(\rm \int sin x dx = -cosx \)

    \(\rm \int cos x dx = sin x \)

    Calculation:

    We have \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C

    ⇒ \(\rm \int (\sqrt{sin^{2}x + cos^{2}x - 2sinx cosx} )dx\) = A sinx + B cosx + C

    ⇒ \(\rm \int (\sqrt{(sinx - cosx)^{2}})dx\) = A sinx + B cosx + C

    ⇒ \(\rm \int (|(sinx - cosx)|)dx\) = A sinx + B cosx + C     ----(i)

    If 0 < x < \(\frac{\pi}{4}\), then sinx < cosx

    ⇒ |sinx - cosx| = -sinx + cosx    -----(ii)

    Now from (i) and (ii), we get 

    ⇒ \(\rm \int (-\space sinx + cosx) \space dx\) = A sinx + B cosx + C

    ⇒ cosx + sinx + C = A sinx + B cosx + C

    On comparing A = 1, B = 1 and C = 0

    Hence, A + B - 2 = 0 is correct.

  • Question 8
    5 / -1
    If \(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\)and \(I_2 = \displaystyle\int_1^2 \dfrac{e^x}{x} dx\) then
    Solution

    Calculation:

    Given:\(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\) and \(I_2 = \displaystyle\int_1^2 \dfrac{e^x}{x} dx\)

    ⇒ \(I_1 = \displaystyle\int_e^{e^2} \dfrac{dx}{\log x}\) put log x = z

    Such that x = ez

    Such that dx = ez dz 

    when x = e, z = loge

    x = e2, z = log e2 = 2 log e = z 

    Such that I1 = \(\displaystyle\int_{1}^{2}\)(ez dz) / z =\(\displaystyle\int_{1}^{2}\)(ex/z) dx = I2

    Such that I1 = I2

    I1 - I2 = 0 

  • Question 9
    5 / -1
    If \(\rm \displaystyle\int \dfrac{1}{\sqrt{9-16x^2}}dx=\alpha \sin^{-1} (\beta x)+c\) then \(\rm \alpha + \dfrac{1}{\beta}=\)
    Solution

    Concept:

    \(\rm \displaystyle\int \dfrac{1}{\sqrt{a^2-x^2}}dx= \sin^{-1}(\frac{x}{a})+c\)

    Calculation:

    Let I = \(\rm \displaystyle\int \dfrac{1}{\sqrt{9-16x^2}}dx\)

    \(= \rm \displaystyle\int \dfrac{1}{4\sqrt{\frac{9}{16}-x^2}}dx\\=\rm \frac{1}{4}\displaystyle\int \dfrac{1}{\sqrt{(\frac{3}{4})^2-x^2}}dx\\=\frac{1}{4} \sin^{-1}[\frac{x}{(\frac{3}{4})}] + c\\=\frac{1}{4} \sin^{-1}(\frac{4x}{3})+c\)

    Now, I = \(\frac{1}{4} \sin^{-1}(\frac{4x}{3})+c=α \sin^{-1} (\beta x)+c\)

    Therefore, α = \(\dfrac{1}{4} \text{and} \; \beta = \dfrac{4}{3}\)

    To Find:

    \(\rm \alpha + \dfrac{1}{\beta}= \dfrac{1}{4} + \dfrac{3}{4} \\ =\dfrac{4}{4}\\=1\)

  • Question 10
    5 / -1
    Integral of sec2 x with respect to sec x is
    Solution

    Concept:

    \( \rm \int x^n dx = \frac{x^{n+1}}{n+1}+c\)

     

    Calculation:

    To Find: Integral of sec2 x with respect to sec x

    \(\rm \int \sec^2 x\; d(\sec x)\)

    Replace sec x = t, we get

    \(= \rm \int t^2 dt\\= \frac{t^3}{3}+c\\=\frac{\sec^3 x}{3}+c\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now