Self Studies
Selfstudy
Selfstudy

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    \(\frac{1}{c}\displaystyle \int_{ac}^{bc}f\left(\frac{x}{c}\right)dx\) is equal to
    Solution

    Formula used:

    \(\frac{d}{dx}x^n=nx^{n-1}\)

    Calculation:

    Let,

    \(I=\frac{1}{c}\displaystyle \int_{ac}^{bc}f\left(\frac{x}{c}\right)dx\)   ---(1)

    Let x/c = t

    ⇒ dx = c dt

    When x = ac ⇒ t = a

    When x = bc ⇒ t = b

    Hence, from equation (1)

    \(I=\frac{1}{c}\displaystyle \int_{ac}^{bc}f\left(\frac{x}{c}\right)dx\)

    \(\Rightarrow I=\frac{1}{c}\times c\displaystyle \int_{a}^{b}f\left(t\right)dt\)

    \(\Rightarrow I=\displaystyle \int_{a}^{b}f\left(t\right)dt\)

    \(\therefore I =\displaystyle \int_{a}^{b} f(x)dx\)

  • Question 2
    5 / -1
    \(\int_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx\)
    Solution

    Concept:

    • sin2 x + cos2 x = 1
    • sin 2A = 2 sin A cos A
    • ∫ cos x = sin x
    • ∫ sin x = -cos x

    Calculation:

    \(∫_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx\)

    \(\Rightarrow ∫_{0}^{\pi /3}\sqrt{(\sin ^2x\, +\, \cos ^2x\, +\, 2\sin x\, \cos x})\, dx\)

    \(\Rightarrow ∫_{0}^{\pi /3}(\cos x\, +\,\sin x)\, dx\)

    \(\Rightarrow \left [ \sin x \, -\, \cos x \right ]_{0}^{\pi /3}\)

    \(\Rightarrow \left [ \sin \frac{\pi }{3}\, -\, \cos \frac{\pi }{3} \right ]-(\sin 0\, -\, \cos 0) \)

    \(\Rightarrow \left [ \frac{\sqrt{3} }{2}\, -\, \frac{1 }{2} \right ]-(0\, -\, 1)\)

    \(\Rightarrow \left [ \frac{\sqrt{3}-1 }{2} \right ]+ 1\)

    \(\Rightarrow \frac{\sqrt{3}+1}{2}\)

    Hence, \(∫_{0}^{\pi /3}\sqrt{1+\sin 2x}\, dx=\frac{\sqrt{3}+1}{2}\)

  • Question 3
    5 / -1
    What is \(\rm \int^\frac{\pi}{2}_0 e^{ln(cos x)} dx\) equal to?
    Solution

    Concept Used:

    • \(\rm \int cos x \space dx = sin x \)
    •  \(e^{ln(f(x))} = f(x)\)

    Calculation:

    Let I = \(\rm \int^\frac{\pi}{2}_0 e^{ln(cos x)} dx\)

    According to the concept used

    ⇒ I = \(\rm \int^\frac{\pi}{2}_0 (cos x) dx\)

    ⇒  \(\rm [sinx]_{0}^{\frac{\pi }{2}}\)

    ⇒  \(\rm sin \frac{\pi }{2} - sin 0\)

    ⇒ 1 - 0 = 1

    ∴ The value of the integral \(\rm \int^\frac{\pi}{2}_0 e^{ln(cos x)} dx\)  is 1.

  • Question 4
    5 / -1
    What is the value of \(\displaystyle \int_{-\pi/2}^{\pi/2}|\sin x|\:dx?\)
    Solution

    Formula used :

    Property of definite integral = \(\displaystyle \int_{-k}^{k}f(x)\:dx = 2\int _{0}^{k} f(x)dx\) .... if f(-x) = f(x) or it is an even function      ---- (1)

    Calculations :

    Now, \(\int_{\frac{-π}{2}}^{\frac{π}{2}}|sin\space x|dx\)

    \(\int_{\frac{-π}{2}}^{0}(-sin\space x)dx\) + \(\int_{0}^{\frac{π}{2}}sin\space xdx\)

    \([\cos x]_{-\frac{π}{2}}^0 + [-\cos x]_0^{\frac{π}{2}}\)

    = [ 1 - cos (-π/2)] - [cos(π/2) - cos 0]

    = [1 - cos(π/2)] - [0 - 1]  (∵ cos (- x) = cos x)

    = [1 - 0 ] - [- 1]

    = 1 + 1

    = 2

    ∴ The value of \(\displaystyle \int_{-π/2}^{π/2}|\sin x|\:dx \space is \ 2\).

  • Question 5
    5 / -1
    Find the value of a + b if \(\rm \int_{0}^{1} \frac{dt}{t^{2}+25}=\frac{1}{5}(tan^{-1}{b}-tan^{-1}{a)}\)
    Solution

    Concept:

    • \(\rm \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}tan^{-1}\frac{x}{a}+C\)
    • \(\rm \int_{0}^{x}{f(x) dx}=F(x)-F(0)\), where F(x) is the anti-derivative of f(x).

    Calculation:

    Given: \(\rm \int_{0}^{1} \frac{dt}{t^{2}+25}=\frac{1}{5}(tan^{-1}{b}-tan^{-1}{a)}\)

    Using the formula, \(\rm \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}tan^{-1}\frac{x}{a}+C\)

    \(\rm \Rightarrow \int_{0}^{1} \frac{dt}{x^{2}+25}=\int_{0}^{1} \frac{dt}{x^{2}+5^{2}}= \frac{1}{5}(tan^{-1}\frac{1}{5}-tan^{-1}\frac{0}{5})=\frac{1}{5}(tan^{-1}\frac{1}{5}-tan^{-1}0)\)---(1)

    ∵ It is given that, \(\rm \int_{0}^{1} \frac{dt}{t^{2}+25}=\frac{1}{5}(tan^{-1}{b}-tan^{-1}{a)}\)------(2)

    On comparing (1) and (2) we get, a = 0, b = 1/5.

    \(\rm \Rightarrow a+b=\frac{1}{5}+0=\frac{1}{5}\)

    Hence, the correct answer is option 3.

  • Question 6
    5 / -1
    If f(2a - x) = f(x) and \(\displaystyle\int^{a}_0f(x)dx= \lambda\) then  \(\displaystyle\int^{2a}_0f(x)dx\) is:
    Solution

    Formula used:

    Property 1:

     \(\int_{0}^{2p}f(a)da= \int_{0}^{p}f(a)da+\int_{0}^{p}f(2p-a)da\)

    Property 2:

     \(\int_{a}^{b}f(x)dx= \int_{a}^{b}f(a +b- x)dx\)

    Calculation:

    Given that

    f(2a - x) = f(x)          -----(1)

    \(\displaystyle\int^{a}_0f(x)dx= \lambda\)     ------(2)

    Using the property (1)

    \(\int_{0}^{2a}f(x)dx = \int_{0}^{a}f(x)dx + \int_{0}^{a}f(2a - x)dx\)   

    From equation (1)  

    \(⇒ \int_{0}^{2a}f(x)dx =\int_{0}^{a}f(x)dx + \int_{0}^{a}f(x)dx\)   

    From equation (2)   

    ⇒  \(\displaystyle\int^{2a}_0f(x)dx\) =  λ + λ                                        

    ⇒  \(\displaystyle\int^{2a}_0f(x)dx\) = 2λ 

    Hence option 1 is correct.

  • Question 7
    5 / -1

    Suppose, \(I = \rm \frac{d}{dx} \int_{\sin x}^{\cos x} \frac{1}{t} dt\), Then which of the following is the correct value of this given definite integral?

    Solution

    CONCEPT:

    Fundamental Theorem of Calculus:

    Newton-Leibniz formula

    \(\rm \frac{d}{dx} \left[ \int_{g(x)}^{h(x)} f(t) dt \right] = f(h(x)) . h'(x) - f(g(x)) g'(x)\)

    CONCEPT:

    Given:

    \(I = \rm \frac{d}{dx} \int_{\sin x}^{\cos x} \frac{1}{t} dt\)

    Using, the Newton-Leibniz formula,

    \(I = = \frac{1}{ \cos x} ( - \sin x)-\frac{1}{sin\ x}(\cos x)\)

    ⇒ I = - tan x - cot x

    So, the correct answer is option 3

  • Question 8
    5 / -1
    Let f(x) and g(x) be twice differentiable functions on [0, 2] satisfying f’’(x) = g”(x), f’(1) = 4, g’(1) = 6, f(2) = 3 and g(2) = 9. Then what is f(x) – g(x) at x = 4 equal to?
    Solution

    Concept:

    • \(\smallint {\rm{f''}}\left( {\rm{x}} \right){\rm{dx\;}} = {\rm{f'}}\left( {\rm{x}} \right) + {{\rm{C}}_1}\)
    • \(\smallint {\rm{f'}}\left( {\rm{x}} \right){\rm{dx\;}} = {\rm{f}}\left( {\rm{x}} \right) + {{\rm{C}}_2}\)


    Calculation:

    Given f’’(x) = g’’(x)

    Integrating both sides, we get

    \(\smallint {\rm{f''}}\left( {\rm{x}} \right){\rm{dx}} = \smallint {\rm{g''}}\left( {\rm{x}} \right){\rm{dx}}\)

    ⇒ f’(x) = g’(x) + C

    Using f’(1) = 4 , g’(1) = 6

    f'(1) = g'(1) + C

    ⇒ 4 = 6 + C

    ⇒ C = -2

    ⇒ f’(x) = g’(x) - 2

    Integrating both sides, we get

    \( \Rightarrow \smallint {\rm{f'}}\left( {\rm{x}} \right){\rm{dx}} = \smallint ({{\rm{g}}^{\rm{'}}}\left( {\rm{x}} \right) - 2){\rm{dx}}\)

    ⇒ f(x) = g(x) - 2x + A

    Using f(2) = 3 and g(2) = 9

    ⇒ f(2) = g(2) - (2 × 2) + A

    ⇒ 3 = 9 - (2 × 2) + A

    ⇒ A = 3 – 9 + 4 = -2

    ⇒ f(x) = g(x) - 2x - 2

    ⇒ f(x) - g(x) = -2x - 2

    So, f(x) – g(x) at x = 4:

    f(4) - g(4) = -(2 × 4) – 2 = -10

  • Question 9
    5 / -1
    What is value of \(\rm \int_{-\pi/2}^{\pi/2} x^{5}\sin^{4}x dx\) ?
    Solution

    Concept: 

    The rules for integrating even and odd functions ,

    If the function is even or odd and the interval is [-a, a], we can apply these rules:

    • When f(x) is even ⇔ \(\rm\int_{-a}^{a}f(x)dx= 2 \int_{0}^{a}f(x)dx\)
    • When f(x) is odd ⇔ \(\rm\int_{-a}^{a}f(x)dx= 0\) 

    Calculation: 

    Let f (x) = x5 sin4 x 

    f (-x) = (-x)5 sin4 (-x) = -x5 (-sin x )= -x5 sin4 x .

    ⇒ f(-x) = - f(x) 

    So, f(x) is an odd function . 

    We knoiw that, when f(x) is odd ⇔ \(\rm\int_{-a}^{a}f(x)dx= 0\) 

    Hence , \(\rm \int_{-\pi/2}^{\pi/2} x^{5}\sin^{4}x dx\) = 0 .  

    The correct option is 4 .

  • Question 10
    5 / -1
    If f(x) = 2x, then what is \(\int^{10}_2\frac{f'(x)}{f(x)}dx\) equal to?
    Solution

    Given:

    f(x) = 2x

    Formula used:

    \(\rm \frac{d}{dx} a^{x} = (In\: a).a^{x}\)

    \(\rm \int 1.dx = x + C\)

    \(\rm \int_{a}^{b} f(x) dx = F(b) - F(a)\), Where \(\rm \int f(x).dx = F(x) + C\)

    Calculation:

    We have f(x) = 2x     ----(i)

    ⇒ f'(x) = 2In(2)    ----(ii)

    Now, We have to find the value of \(\rm \int^{10}_2\frac{f'(x)}{f(x)}dx\)

    Form equation (i) and (ii), we get 

     \(\rm \int^{10}_2 \frac{2^{x} In(2)}{2^{x}} dx\)

    ⇒ \(\rm \int^{10}_2 { In(2)} \space dx\)

     \(\)In(2) [10 - 2]

    ⇒ 8 In(2)

    ∴​ The value of \(\rm \int^{10}_2\frac{f'(x)}{f(x)}dx\) is equal to 8 In(2).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now