Self Studies
Selfstudy
Selfstudy

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    The order and degree of the differential equation \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\) respectively are
    Solution

    Concept:

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    Calculation:

    Given:

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Highest derivative in the given differential equation is 4

    Hence order is 4.

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \({\left[ {{{\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)}^{\frac{1}{2}}}} \right]^6} = {\left[ {{{\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]}^{\frac{1}{3}}}} \right]^6}\)

    \(\Rightarrow {\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^3} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^2}\)

    Now the differential equation is free from radicals

    Degree of highest derivative = 3

    ∴ Order and degree of the given differential equation = 4 and 3 respectively.

  • Question 2
    5 / -1
    The differential equation of all lines passing through the origin is:
    Solution

    Concept:

    Differential Equation: A differential equation is an equation that relates one or more functions and their derivatives.

    e.g. \(\rm \dfrac{dy}{dx}\) + x = 2y + 3, etc.

    \(\rm \dfrac{d}{dx}x^n\) = nxn-1.

     

    Calculation:

    The general equation of all lines passing through the origin is y = mx, where m is a constant. Differentiating this equation with respect to x, we get:

    \(\rm \dfrac{d}{dx}(y)=\dfrac{d}{dx}(mx)\)

    ⇒ \(\rm \dfrac{dy}{dx}=m=\dfrac{y}{x}\)

    ∴ The answer is none of these.

  • Question 3
    5 / -1

    The general solution y(x) of the differential equation 

    \(\rm {dy\over dx}= {\sqrt{1-y^2}\over \sqrt{1-x^2}}\)

    Solution

    Concept:

    Separation of variable:

    If the equation is such that the variables can be separated, then

    • Separate the variables.
    • Take a single variable on either side.
    • Integrate both sides w.r.t the respective variable.


    Calculation:

    The given differential equation is 

    \(\rm {dy\over dx}= {\sqrt{1-y^2}\over \sqrt{1-x^2}}\)

    \(\rm {dy\over \sqrt{1-y^2}}= {dx\over\sqrt{1-x^2}}\)

    Integrating both sides, we get

    \(\rm \int{dy\over \sqrt{1-y^2}}= \int{dx\over\sqrt{1-x^2}}\)

    ⇒ sin-1 y = sin-1x + c

    ⇒ sin-1 y = sin-1 x + sin-1 c

    ⇒ sin-1 y - sin-1 x = sin-1 c

  • Question 4
    5 / -1

    Find the integrating factor of the following differential equation.

    \(\frac{{dy}}{{dx}} + (2cosec\;x)y = {\tan ^3}\left( {\frac{x}{2}} \right)\)
    Solution

    Concept:

    Integrating factor of \(\frac{{dy}}{{dx}} + Py = Q\left( x \right)\) is given by,

    IF = e∫ Pdx

    Calculation:

    P = 2 / sin x

    IF = e∫ 2 / sin x dx = e∫ 2 cosec xdx

    IF = e2 log (tan (x / 2))

    IF = tan2 (x / 2)

  • Question 5
    5 / -1
    Solve (2y + x) \(\rm dy\over dx\) = 1
    Solution

    Concept:

    In first order linear differential equation;

    \(\rm {dy\over dx}+Py=Q\), where P and Q are function of x

    Integrating factor (IF) = e∫ P dx

    General solution: y × (IF) = ∫ Q(IF) dx

    Calculation:

    The given equation is

    (2y + x) \(\rm dy\over dx\) = 1

    ⇒ (2y + x) = \(\rm dx\over dy\)

    ⇒ \(\rm dx\over dy\) - x = 2y

    ∴ It is linear differential equation is of first order

    IF = e∫ -1 dy

    ⇒ IF = e-y

    Now, x × (IF) = ∫ Q (IF) dy

    ⇒ x × e-y = ∫ 2y × e-y dy

    ⇒ xe-y = 2\(\rm \left[y\int e^{-y}dy - \int\left\{ {dy\over dy}\times\int e^{-y}dy\right\}dy\right]\)

    ⇒ xe-y = 2\(\rm \left[-ye^{-y} + \int e^{-y}dy\right]\) + c

    ⇒ xe-y = 2\(\rm \left[-ye^{-y} - e^{-y}\right]\) + c

    ⇒ x + 2y + 2 = cey

  • Question 6
    5 / -1
    Find the general solution of the differential equation \(ydx = \left( {y - x} \right)dy\)
    Solution

    Concept:

    The standard form of a linear equation of the first order is given by \(\frac{{dy}}{{dx}} + Py = Q\) where P, Q are arbitrary function of x.

    The integrating factor of the linear equation is given by \(I.F. = {e^{\smallint pdx}}\)

    The solution of the linear equation is given by \(y\left( {I.F.} \right) = \smallint Q\left( {I.F.} \right)dx + c.\)

    Calculation:

    \(ydx = \left( {y - x} \right)dy\)

    \(y\frac{{dx}}{{dy}} = y - x\)

    \(\frac{{dx}}{{dy}} + \frac{x}{y} = 1\)

    It is form of \(\frac{{dx}}{{dy}} + Px = Q\)

    \(I.F. = {e^{\smallint pdy}}\)

    \(I.F. = {e^{lny}} = y\)

    The solution of the linear equation is given by

    \(x\left( {I.F.} \right) = \smallint Q\left( {I.F.} \right)dy + c.\)

    \(x\left( y \right) = \smallint 1\left( y \right)dy + c\)

    \(xy = \frac{{{y^2}}}{2} + c\)

    \(x = \frac{y}{2} + \frac{c}{y}\)
  • Question 7
    5 / -1
    For the equation \(\frac{{dy}}{{dx}} + 7{x^2}y = 0\), if y(0) = \(\frac{{3}}{{7}}\), then the value of y(1) is
    Solution

    Concept:

    For solving first order, first-degree differential equations always first inspect with variable separation method.

    Calculation:

    Given the differential equation is,

    \(\frac{{dy}}{{dx}} + 7{x^2}y = 0 \Rightarrow \frac{{dy}}{{dx}} = - 7{x^2}y\), separating variables

    \(\frac{{dy}}{y} = - 7{x^2}dx\), integrating both sides;

    \(\smallint \frac{{dy}}{y} = - 7\smallint {x^2}dx;lny = - 7\frac{{{x^3}}}{3} + lnA\)

    Where A is a constant.

    \(\ln y - \ln A = - \frac{{7{x^3}}}{3} \Rightarrow \ln \left( {\frac{y}{A}} \right) = - \frac{{7{x^3}}}{3}\)

    \(\frac{y}{A} = {e^{ - \frac{7}{3}{x^3}}} \Rightarrow y = A{e^{ - \frac{7}{3}{x^3}}}\) …(1)

    Use condition \(y\left( 0 \right) = \frac{3}{7}\) in (1)

    \(\Rightarrow \frac{3}{7} = A\;use\;in\;(1) \Rightarrow y = \frac{3}{7}{e^{ - \frac{{7{x^3}}}{3}}}\)

    Key Points

    Practice all the methods of solving first order first-degree differential equations.

    In these questions, options are very confusing. So, study all options carefully.
  • Question 8
    5 / -1
    Solve the initial value problem, dy = ex + 2y dx , y (0) = 0. 
    Solution

    Concept:  

    \(\rm \int e^{x}dx = e^{x}\)

    ln ey = y .

    Calculation: 

    We have , 

    dy = ex + 2y dx 

    ⇒ dy = ex . e2y dx 

    ⇒ e-2y dy = ex dx 

    On Integrating both sides, We get

    \(\rm -\frac{1}{2} \) e-2y  = ex + C          .... (i) 

    It is given that y (0) = 0 , i.e. at x = 0 , y = 0 , putting this in (i) , 

    \(\rm -\frac{1}{2} \) = 1 + C 

    ⇒ C = \(\rm -\frac{3}{2} \) . 

    Putting C = \(\rm -\frac{3}{2} \) in (i) , we get 

    \(\rm -\frac{1}{2} \) e-2y = ex  \(\rm -\frac{3}{2} \)

    ⇒ e-2y = - 2ex  + 3

    ⇒ e2y = \(\rm \frac{1}{3- 2\ e^{x}} \) 

    ⇒ 2y = ln \(\rm \left ( \frac{1}{3- 2\ e^{x}} \right )\) 

    ⇒ y = \(\rm \frac{1}{2}\ln\left ( \frac{1}{3- 2\ e^{x}} \right )\) . 

    The correct option is 3. 

  • Question 9
    5 / -1
    If \(x\frac{dy}{dx}=y(\log y-\log x+1)\), then the solution of the equation is
    Solution

    Concept:

    A differential equation is solved by separating the variables and then eliminating the differential terms by integrating both sides.

    Calculation:

    Given, \(x\frac{dy}{dx}=y(\log y-\log x+1)\)

    ⇒ \(\frac{dy}{dx}={y\over x}(\log {y\over x}+1)\)     -----(i)

    Let y = v.x ⇒ \({dy \over dx} = v + x {dv \over dx}\)

    Putting the value of y and \({dy \over dx}\) in (i),

    ⇒ \(v + x {dv \over dx} = v (\log v + 1)\)

    ⇒ \(x {dv \over dx} = v \log v\)

    ⇒ \({dv \over v \log v} ={dx \over x}\)

    Integrating both sides,

    ⇒ \(\int{dv \over v \log v} =\int{dx \over x} \)

    If log v = t ⇒ dv/v = dt

    ⇒ \(\int{dt \over t} = \log x + c\)

    ⇒ \(\log t = \log x + c\)

    ⇒ \(\log {t \over x} = c\)

    ⇒ t/x = ec

    ⇒ t/x = C

    ⇒ t = Cx

    ⇒ \(\log v = Cx\)

    ⇒ \(\log {y \over x}= Cx\)

    ∴ The correct answer is option (4).

  • Question 10
    5 / -1

    What is the general solution of the differential equation x2 dy + y2 dx = 0 ?

    Where c is the constant of integration

    Solution

    Concept:

    \(\rm \int \frac{1}{x^2}\;dx = \frac{-1}{x} + c\)

    Calculation:

    Given:

    x2dy + y2dx = 0

    ⇒ x2dy = -y2dx

    \(\rm ⇒ \frac{dy}{y^2} = -\rm\frac{dx}{x^2}\)

    Integrating both sides, we get

    \(\rm \int \frac{dy}{y^2} = -\rm\int\frac{dx}{x^2}\)

     \(\rm \frac{-1}{y} = -\frac{-1}{x} + c\\\rm \frac{-1}{y} = \frac{1}{x} + c\\ \frac{1}{x}+ \frac{1}{y}= -c\\x+y=-cxy\)

    Here c is differential constant, take -c = 1/c (Because 1/c is also a constant)

    ⇒ c(x + y) = xy

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now