Probability Density Function:
It indicates the distribution of total probability to various random variables (R.V)
\(f\left( x \right) = \frac{d}{{dx}}F\left( x \right)\)
f(x) : pdf (Probability density function)
F(x) : PDF (probability Distribution function)
For a continuous R.V., the probability of occurrence at a particular value of ‘x’ will be ‘zero’. [Area approaches to zero].
Since the given R.V. is continuous and the period/interval is [a, b]:
P[x = c] will be zero.
∴ P[x = 8] will be zero.
Important Notes:
Properties of pdf:
1) \(\mathop \smallint \nolimits_{ - a}^x f\left( x \right)dx = 1\) (or) Total area = 1
2) \(P\left[ {x \le {x_1}} \right] = F\left( {{x_1}} \right) = \mathop \smallint \nolimits_{ - \infty }^{{x_1}} f\left( x \right)dx\)
3) \(P\left[ {x > {x_1}} \right] = 1 - F\left( {{x_1}} \right) = \mathop \smallint \nolimits_{{x_1}}^\infty f\left( x \right)dx\)
4) \(P\left[ {{x_1} < x \le {x_2}} \right] = \mathop \smallint \nolimits_{{x_1}}^{{x_2}} f\left( x \right)dx\)
For Discrete R.V., the Probabilities are defined at a particular value. Whereas for continuous R.V. probabilities are defined for a particular interval.