Self Studies
Selfstudy
Selfstudy

Mathematics Test - 9

Result Self Studies

Mathematics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1

    A continuous random variable, X is defined in the interval 5 to 15.

    The probability, P(X = 8) is ______.

    Solution

    Probability Density Function:

    It indicates the distribution of total probability to various random variables (R.V)

    \(f\left( x \right) = \frac{d}{{dx}}F\left( x \right)\)

    f(x) : pdf (Probability density function)

    F(x) : PDF (probability Distribution function)

    For a continuous R.V., the probability of occurrence at a particular value of ‘x’ will be ‘zero’. [Area approaches to zero].

    Since the given R.V. is continuous and the period/interval is [a, b]:

    P[x = c] will be zero.

    ∴ P[x = 8] will be zero.

    Important Notes:

    Properties of pdf:

    1) \(\mathop \smallint \nolimits_{ - a}^x f\left( x \right)dx = 1\) (or) Total area = 1

    2) \(P\left[ {x \le {x_1}} \right] = F\left( {{x_1}} \right) = \mathop \smallint \nolimits_{ - \infty }^{{x_1}} f\left( x \right)dx\)

    3) \(P\left[ {x > {x_1}} \right] = 1 - F\left( {{x_1}} \right) = \mathop \smallint \nolimits_{{x_1}}^\infty f\left( x \right)dx\) 

    4) \(P\left[ {{x_1} < x \le {x_2}} \right] = \mathop \smallint \nolimits_{{x_1}}^{{x_2}} f\left( x \right)dx\)

    For Discrete R.V., the Probabilities are defined at a particular value. Whereas for continuous R.V. probabilities are defined for a particular interval.

  • Question 2
    5 / -1

    The probability distribution of a discrete random variable W is given below:

    W2345
    P(W)\(\rm \frac{13}{k}\)\(\rm \frac{15}{k}\)\(\rm \frac{17}{k}\)\(\rm \frac{19}{k}\)


    The value of k is?

    Solution

    Calculation:

    \(\rm \sum p_{i} = 1\)

    \(\rm \frac{13}{k} + \frac{15}{k} + \frac{17}{k} + \frac{19}{k} = 1\)

    \(\rm \frac{64}{k} = 1\)

    k = 64

    The value of k is 64

  • Question 3
    5 / -1
    If the mean and the variance of a binomial variate Y are 2 and 1 respectively, then the probability that Y takes a value greater than or equal to one is?
    Solution

    Calculation:

    Given, np = 2       ....(1)

    and npq = 1     ....(2)

    On solving 1 and 2, we get

    \(\rm p = \frac{1}{2}, q = \frac{1}{2}, n = 4\)

    P(X ≥ 1)

    = 1 - P(X < 1)

    = 1 - P(X = 0)

    = 1 - 4C0  \(\rm \left (\frac{1}{2} \right )^{0} \left ( \frac{1}{2} \right )^{4}\)

    \(\rm \frac{15}{16}\)

    The probability that Y takes a value greater than or equal to one is \(\rm \frac{15}{16}\)

  • Question 4
    5 / -1

    For the probability distribution given by 

     X = xi 

     0 

     1 

     2 

     pi

     \(\dfrac{25}{36}\) 

     \(\dfrac{5}{18}\) 

     \(\dfrac{1}{36}\) 


    the standard deviation (σ) is:

    Solution

    Concept:

    For a random variable X = xi with probabilities P(X = xi) = pi:

    • Mean/Expected Value: μ = ∑pixi.
    • Variance: Var(X) = σ2 = ∑pi(xi)2 - (∑pixi)2 = ∑pi(xi)2 - μ2.
    • Standard Deviation: σ = \(\rm \sqrt{Var(X)}\).

     

    Calculation:

    We have x1 = 0, x2 = 1, x3 = 2 and p1\(\dfrac{25}{36}\), p2\(\dfrac{5}{18}\), p3\(\dfrac{1}{36}\).

    ∑pixi = \(\dfrac{25}{36}\times 0+\dfrac{5}{18}\times 1+\dfrac{1}{36}\times 2=\dfrac{6}{18}=\dfrac{1}{3}\).

    ∑pi(xi)2 = \(\dfrac{25}{36}\times 0^2+\dfrac{5}{18}\times 1^2+\dfrac{1}{36}\times 2^2=\dfrac{7}{18}\).

    ∴ Var(X) = σ2 = ∑pi(xi)2 - (∑pixi)2 = \(\dfrac{7}{18}-\left(\dfrac{1}{3}\right)^2=\dfrac{5}{18}\).

    ⇒ Standard Deviation = σ = \(\rm \sqrt{Var(X)}=\sqrt{\dfrac{5}{18}}=\dfrac{1}{3}\sqrt{\dfrac{5}{2}}\).

  • Question 5
    5 / -1

    The value of k for which the function 

    \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {k{e^{ - 3x}},}&{x > 0}\\ 0&{elsewhere} \end{array}} \right.\)

    is probability density function, is

    Solution

    Given

    f(x) = { ke-3x, x > o

              { 0, elsewhere

    Concept used

    \(\smallint \limits_{ - \infty }^\infty f\left( x \right)dx \) = \( \smallint \limits_{ - \infty }^0 f\left( x \right)dx\) + \(\smallint \limits_0^\infty f\left( x \right)dx\) = 1

    Calculation

    According to given part

    \(\smallint \limits_{ - \infty }^0 f\left( x \right)dx\) = 0

    ⇒ 0 + \( \smallint \limits_0^\infty f\left( x \right)dx\) = 0

    ∫ke-3xdx = 1

    ⇒ k[-e-3x/3]

    ⇒ -k/3[e-∞- e0] = 1

    ⇒ -k/3(0 – 1) = 1

    ⇒ k./3 = 1

    The value of k = 3 for PDF

  • Question 6
    5 / -1
    If x is a random variable with the expected value of √5  and the standard deviation of 4, then the expected value of x2 is
    Solution

    Concept:

    For any random variable x:

    Var(x) = E(x2) - {E(x)}2 

    E(x2) = Var(x) + {E(x)}2

    Where, E(x) = Expected value and Var(x) = Variance.

    \(Standard\;Deviation\;σ=\sqrt{Variance}\)

    Calculation:

    Given:

    E(x) = \(\sqrt{5}\), Standard deviation σ = 4

    \(Standard\;Deviation\;σ=\sqrt{Variance}\)

    \(4=\sqrt{Variance}\)

    Variance = 16

    For any random variable x:

    E(x2) = Var(x) + {E(x)}2

    \(E(x^2)=16+(\sqrt{5})^2=21\)

  • Question 7
    5 / -1

    Find the expectation of random variable a?

    a01234
    F(a)1/72/73/74/75/7
    Solution

    Concept: 

    E[x] = Mean of Random variable X

    X = discrete random variable

    The expectation is given by the formula:

    \(E\left[ x \right] = \mathop \sum \limits_{i = 1}^n {x_i}\;P\left( {{x_i}} \right)\)

    where xi = ith random variable and P(xi) = Probability of xi.

    Calculation:

    We know that,

    \(E\left[ x \right] = \mathop \sum \limits_{i = 1}^n {x_i}\;P\left( {{x_i}} \right)\)

    ⇒ E(X) = 0(1/7) + 1(2/7) + 2 (3/7) + 3(4/7) + 4(5/7)

    ⇒ E(X) = 0 + 2/7 + 6/7 + 12/7 + 20/7

    ⇒ E(X) = 5.71

  • Question 8
    5 / -1
    The mean and variance of a binomial distribution are 8 and 4 respectively, then p(x = 1) is equal to-
    Solution

    Concept:

    Binomial distribution: 

    If a random variable X has binomial distribution as B (n, p) with n and p as parameters, then the probability of random variable is given as:

    P(X = k) = nCk pk q(n - k)

    where n is the number of observations, p is the probability of success & q is the probability of failure.

    Properties:

    • Mean of the distribution (μ) = np
    • The variance (σ2) = npq

    Calculation:

    Given: 

    mean μ = np = 8      ----(1)

    variance σ2 = npq = 4       ----(2)

    Dividing equation (2) by (1), we get

    q = 1/2

    As we know, p + q = 1

    ⇒ p = 1 - q = 1/2

    Put the value of n in equation (1), we get

    n = 16

    Now,

    P(x = 1) = \(\rm ^{16}C_1 \left(\frac{1}{2}\right)^1 \times \left(\frac{1}{2}\right)^{16-1}\)

    \(\Rightarrow16 \times \frac{1}{2^{16}}\\\Rightarrow2^4 \times \frac{1}{2^{16}}\\\therefore\frac{1}{2^{12}}\)

  • Question 9
    5 / -1
    If a random variable X can assume any positive integer value n with a probability \(\frac{1}{{{3^n}}}\), then the expectation of X is _________.
    Solution

    Concept:

    E[x] = Mean of Random variable X

    X = discrete random variable

    The expectation is given by the formula:

    \(E\left[ x \right] = \mathop \sum \limits_{i = 1}^n {x_i}\;P\left( {{x_i}} \right)\)

    xi = ith random variable

    P(xi) = Probability of xi

    Calculation:

    The probability distribution of X is:

    X

    1

    2

    3

    P(X)

    \(\frac{1}{3}\)

    \(\frac{1}{{{3^2}}}\)

    \(\frac{1}{{{3^3}}}\)

     

    \(E\left( X \right) = \mathop \sum \nolimits_{n = 1}^\infty n\left( {\frac{1}{{{3^n}}}} \right)\;\)

    \(\left( {\frac{1}{3}} \right) + 2{\left( {\frac{1}{3}} \right)^2} + 3{\left( {\frac{1}{3}} \right)^3} + \ldots + \infty \)

    \(\frac{1}{3}{\left( {1 - \frac{1}{3}} \right)^{ - 2}} = \frac{3}{4}\)

  • Question 10
    5 / -1
    If a fair die is rolled 4 times, then what is the probability that there are exactly 2 sixes?
    Solution

    Concept:

    Binomial distribution:

    \(b\;\left( {x;n\;,\;p} \right) = \;{\;^n}{C_x} \times {p^x} \times {q^{n - x}}\) where p is the probability of success, q is the probability of failure, n is the total no. of attempts and x is the no. of successful attempts.

    Calculation:

    Given: A fair die is rolled 4 times.

    Let p represent the probability of getting 6 when a dice is rolled = 1 / 6

    Let q represent the probability of not getting 6 when a dice is rolled

    = 1 – (1 / 6) = 5 / 6

    As we know that, according to binomial distribution:

    \(b\;\left( {x;n\;,\;p} \right) = \;{\;^n}{C_x} \times {p^x} \times {q^{n - x}}\)

    Here, n = 4, x = 2, p = 1 / 6 and q = 5 / 6.

    So, the probability of getting exactly 2 sixes when a fair dice is rolled 4 times

    ⇒ \(b\;\left( {x;n\;,\;p} \right) = \;{\;^4}{C_2} \times {\left( {\frac{1}{6}} \right)^2} \times {\left( {\frac{5}{6}} \right)^2} = \frac{{25}}{{216}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now