Self Studies
Selfstudy
Selfstudy

Numerical Ability Test - 10

Result Self Studies

Numerical Ability Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    What is the value of √180?
    Solution

    Given:

    The given number is √180.

    Calculation:

    According to the question, we have,

    √180 = √(3 × 3 × 2 × 5 × 2)

    ⇒ √180 = 3 × 2√5

    ⇒ 6√5

    ∴ The value of √180 is 6√5.

  • Question 2
    5 / -1
    \(\frac {\sqrt [3]x}{2.56 } = \frac{100}{x} \) then 'x' is equal to :
    Solution

    Calculation:

    \(\frac {\sqrt [3]x}{2.56 } = \frac{100}{x} \)

    \({x^{4/3}} = {100}× 2.56\)

    \({x} =256^{3/4}\)

    x = 162 × 3/4 = 42 × 3/2

    x = 43 = 64

    Additional InformationFormula used:

    a× an = a(m + n)

    a÷ an = a(m - n)

    (am)= amn

  • Question 3
    5 / -1

    16√n = √1600 + √576, find the value of n? 

    Solution

    Given:

    16√n = √1600 + √576

    Calculation:

    According to the question,

    ⇒ 16√n = √1600 + √576

    ⇒ 16√n = 40 + 24

    ⇒ √n = 64/16

    ⇒ √n = 4

    n = (4)2 = 16

    ∴ Value of n is 16

  • Question 4
    5 / -1
    The value of \(\left[5{\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^3}\right]^{\frac{1}{4}}\) is
    Solution

    Formula used:

    (ax)y = axy

    Calculation:

    \(\left[5{\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^3}\right]^{\frac{1}{4}}\)

    ⇒ \(\left[5{\left((2^3)^{\frac{1}{3}}+(3^3)^{\frac{1}{3}}\right)^3}\right]^{\frac{1}{4}}\)

    ⇒ \(\left[5{\left((2)+(3)\right)^3}\right]^{\frac{1}{4}}\)

    ⇒ \(\left[5{\left(2 + 3\right)^3}\right]^{\frac{1}{4}}\) 

    ⇒ \(\left[5 ×{\left(5\right)^3}\right]^{\frac{1}{4}}\)

    ⇒ \(\left[{\left(5\right)^4}\right]^{\frac{1}{4}}\) = 5

    ∴ The value of \(\left[5{\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^3}\right]^{\frac{1}{4}}\) is 5.

  • Question 5
    5 / -1
    If 1252 × (625)-0.25 = 5x, then the value of x is
    Solution

    Concept used:

    ab × ac = ab + c

    If ab = ac then b = c

    (ab)c = ab × c

    Calculation:

    1252 × (625)-0.25 = 5x

    ⇒ 53 × 2 × 5× -0.25 = 5x

    ⇒ 5× 5-1 = 5x

    ⇒ 56 - 1 = 5x

    ⇒ 55 = 5x

    ⇒ x = 5

  • Question 6
    5 / -1

    Find the value of x:

    23 × 34 × 1080 ÷ 15 = 6x

    Solution

    Given,

    23 × 34 × 1080 ÷ 15 = 6x

    ⇒ 23 × 34 × 72 = 6x

    ⇒ 23 × 34 × (2 × 62) = 6x

    ⇒ 24 × 34 × 62 = 6x

    ⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

    ⇒ 64 × 62 = 6x

    ⇒ 6(4 + 2) = 6x

    ⇒ x = 6

  • Question 7
    5 / -1
    If (56/x) = √(196/324) , find the value of x
    Solution

    (56/x) = √(196/324)​

    ⇒ (56/x) = 14/18

    ⇒ x = (56 × 18)/14

    ⇒ x = 72

    ∴ The value of x is 72.

  • Question 8
    5 / -1
    The cube root of 3375 is equal to:
    Solution

    ∛3375

    ∛(3 × 3 × 3 × 5 × 5 × 5)

    3 × 5 = 15

  • Question 9
    5 / -1
    The square of 2112 is -
    Solution

    Given:

    The square of 2112 

    Formula used:

    (a + b)= a2 + b2 + 2ab

    Calculation:

    (2100 + 12)2

    ⇒ (2100)2 + (12)2 + 2 × 2100 × 12

    ⇒ 4410000 + 144 + 50400

    ⇒ 4460544

    ∴ The square of 2112 is 4460544.

  • Question 10
    5 / -1

    Find the value of x

    292 - 252 = 63 + x

    Solution

    Concept used:

     

    Calculations:

    ⇒ 292 - 252 = 63 + x

    ⇒ 841 - 625 = 63 + x

    ⇒ 216 = 63 + x

    ⇒ 216 - 216 = x

    ⇒ x = 0

    ∴ The value of x is 0.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now