Self Studies
Selfstudy
Selfstudy

Numerical Ability Test - 9

Result Self Studies

Numerical Ability Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    5 / -1
    The difference of two number is 2 and difference of their squares is 28. The sum of the number will be:
    Solution

    Given:

    Difference of two numbers is 2

    Difference of their squares is 28.

    Concept used:

    a2 - b2 = (a - b) (a + b)

    Calculation:

    Let the two number be x and y

    ⇒ x - y = 2  - - (i)

    Difference of their squares

    ⇒ x2 - y2 = 28  - - (ii)

    Using the formulae

    ⇒ 28 = 2 (x + y)

    ⇒ x + y = 28/2

    ⇒ x + y = 14

    ∴ The sun of the number is 14.

  • Question 2
    5 / -1
    If a + b + c = 10 and ab + bc + ca = 31, then the value of a3 +b3 + c3 - 3abc is
    Solution

    Given :

    a + b + c = 10

    ab + bc + ca = 31

    Formula used :

    (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

    a+b3 + c3 - 3abc = (a+ b + c) (a2 + b2 + c2 – ab – bc – ca)

    Calculation :

    We have, 

    ab + bc + ca = 31     ----(1)

    a + b + c = 10         ----(2)

    Squaring both side

    (a + b + c) = 102

    ⇒ a2 + b2 + c2 + 2(ab + bc + ca) = (10)2

    ⇒ a2 + b2 + c2 + 2 × 31 = 100    [(From equation (1)]

    ⇒ a2 + b2 + c2 + 62 = 100

    ⇒ a2 + b2 + c2  = 38

    By usnig the formula

    a+b3 + c3 - 3abc = (a+ b + c) [a2 + b2 + c2 - (ab + bc + ca)]

    ⇒  a+b3 + c3 - 3abc = 10(38 - 31)

    ∴  a+b3 + c3 - 3abc = 70

  • Question 3
    5 / -1

    Simplify the following expression.

    \(\frac{(375+125)^2-(125-375)^2}{375\times375-125\times125}\)

    Solution

    Given:

    \(\frac{(375+125)^2-(125-375)^2}{375\times375-125\times125}\)

    Concept Used:

    (A + B)2 - (A - B)2 = 4AB

    A2 - B2 (A + B) (A - B)

    Calculation:

    Let 375 be A & 125 be B.

    Now, 

    {(A + B)2 - (B - A)2} ÷ (A × A - B × B)

    ⇒ {(A + B)2 - (A - B)2} ÷ (A2 - B2)

    ⇒ (4 × AB) ÷ {(A + B) (A - B)}

    ⇒ (4 × 375 × 125) ÷ {(375 + 125) (375 - 125)}

    ⇒ \(\frac{4 × 375 × 125 } {500 \times 250}\)

    ⇒ 375/250

    ⇒ 3/2

    ∴ The value of given expression in 3/2.

  • Question 4
    5 / -1
    if x + y = 3 and \(\frac{1}{x}+\frac{1}{y}=-\frac{3}{10}\), then the value of (x2 + y2) is:
    Solution

    Given:

    x + y = 3

    1/x + 1/y = - (3/10)

    Concept Used:

    (A + B)2 = A2 + 2AB + B2

    Calculation:

    1/x + 1/y = - (3/10)

    ⇒ (x + y)/xy = - (3/10)

    ⇒ xy = (-10)

    Now,

    x + y = 3

    ⇒ (x + y)2 = 9 (Squaring both side)

    x2 + y2 + 2xy = 9

    x2 + y2 = 9 - 2xy

    x2 + y2 = 9 – 2 × (-10)

    ⇒ x2 + y= 29

    ∴ The required value of x2 + y2 is 29.

  • Question 5
    5 / -1
    If a + b = 8 and a2 + b2 = 34 (a > b), then a2 - b2 will be
    Solution

    Given

    a + b = 8          ----(1)

    a2 + b2 = 34      ----(2)

    Formula used:

    • (a + b)2 = a2 + 2ab + b2
    • (a - b)2 = a2 - 2ab + b2
    • a2 - b2 = (a + b)(a - b)

     

    Calculation:

    ∵ (a + b)2 = a2 + 2ab + b2

    ⇒  82 = 34 + 2ab

    ⇒ 2ab = 30     ----(3)

    ⇒ ab = 15

    ∵ (a - b)2 = a2 - 2ab + b2

    ⇒ (a - b)2 = 34 - 2 × 15 = 4

    ⇒ a - b = 2    ----(4)

    ∵ a2 - b2 = (a + b)(a - b)

    Hence, required value suing the equation (1) and (4)

    a2 - b2 = 8 × 2

    ⇒ a2 - b2 = 16

  • Question 6
    5 / -1
    Find the value of 1013.
    Solution

    Given:

    The given number is 1013.

    Formula used:

    (a + b)3 = a3 + b3 + 3ab(a + b)

    Calculation:

    (101)3

    ⇒ (100 + 1)3

    ⇒ (100)3 + 13 + [3 × 100 × 101]

    ⇒ 1000000 + 1 + 30300

    ⇒ 1030301

  • Question 7
    5 / -1
    Select the most appropriate option to solve the equation: 67192 - 32812 = ?
    Solution

    Given:

    (6719)2 - (3281)2

    Formula used:

    a2 - b2 = (a - b) (a + b)

    Calculation:

    (6719)2 - (3281)2 

    ⇒ (6719 - 3281) (6719 + 3281)

    ⇒ 3438 × 10000

    ⇒ 34380000

    ∴ The value of (6719)2 - (3281)2 is 34380000.

  • Question 8
    5 / -1
    If (a - b) = 3, ab = 18, find the value of a3 - b3
    Solution

    Given

    (a - b) = 3 and ab = 18

    Formula used

    (a - b)3 = a3 - b- 3ab(a - b)

    Calculation

    (3)3 = a- b- 3 × 18 × 3

    ⇒ 27 = a- b3 - 162

    ⇒ 27 + 162 =  a3 - b3

    ⇒ 189 = a3 - b3

    ∴ The value of a- b3 is 189

  • Question 9
    5 / -1
    If a + b = 9 and ab = 20, then find the value of (a3 + b3).
    Solution

    Given:

    A + b = 9 and ab = 20

    Formula:

    a3 + b3 = (a + b)3 – 3ab(a + b)

    Calculation:

    a3 + b3 = (a + b)3 – 3ab(a + b)

    ⇒ a3 + b3 = 93 – 3 × 20 × 9

    ⇒ a3 + b3 = 729 - 540

    ⇒ a3 + b3 = 189

    Smart Trick

    Take a = 5 and b = 4 (a + b = 5 + 4 = 9 and ab = 5 × 4 = 20)

    ∴ a3 + b3 = 53 + 43 = 125 + 64 = 189.

  • Question 10
    5 / -1

    The factors of x2 + 8x + 12 are:

    A. (x + 6) (x + 2)

    B. (x - 6) (x + 2)

    C. (x - 4)2

    D. (x + 6)(x - 2)

    Solution

    Calculation:

    x2 + 8x + 12

    ⇒ x2 + 6x + 2x + 12

    ⇒ x (x + 6) + 2 (x + 6)

    ⇒ (x + 6) (x + 2)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now