Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    The lowest eigen value of the 2 × 2 matrix \(\left[ {\begin{array}{*{20}{c}}4&2\\1&3\end{array}} \right]\) is _________
    Solution

    \({\rm{Let\ A}} = \left[ {\begin{array}{*{20}{c}}4&2\\1&3\end{array}} \right]\)

    Characteristic equation of A is |A - λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}}{4 - {\rm{\lambda }}}&2\\1&{3 - {\rm{\lambda }}}\end{array}} \right| = 0\) 

    ⇒ λ2 – 7λ + 10 = 0 ⇒ λ = 2, 5

  • Question 2
    2 / -0.33

    If the Laplace transform of y(t) is given by \(Y\left( s \right) = L\left( {y\left( t \right)} \right) = \frac{5}{{2\left( {s - 1} \right)}} - \frac{2}{{s - 2}} + \frac{1}{{2\left( {s - 3} \right)}}\), then y(0) + y'(0) = _________.

    Solution

    \(Y\left( s \right) = L\left( {y\left( t \right)} \right) = \frac{5}{{2\left( {s - 1} \right)}} - \frac{2}{{s - 2}} + \frac{1}{{2\left( {s - 3} \right)}}\)

    Apply inverse Laplace transform,

    \( \Rightarrow y\left( t \right) = \frac{5}{2}{e^t} - 2{e^{2t}} + \frac{1}{2}{e^{3t}}\)

    Differentiate with respect to ‘t’.

    \( \Rightarrow y'\left( t \right) = \frac{5}{2}{e^t} - 4{e^{2t}} + \frac{3}{2}{e^{3t}}\)

    \(\begin{array}{l} y\left( 0 \right) = \frac{5}{2} - 2 + \frac{1}{2} = 1\\ y'\left( 0 \right) = \frac{5}{2} - 4 + \frac{3}{2} = 0 \end{array}\)

    ⇒ y(0) + y'(0) = 1

  • Question 3
    2 / -0.33

    Consider the following differential equation:

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Which of the following is/are true regarding the above differential equation?

    Solution

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Highest derivative in the given differential equation is 4

    Hence order is 4.

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \({\left[ {{{\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)}^{\frac{1}{2}}}} \right]^6} = {\left[ {{{\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]}^{\frac{1}{3}}}} \right]^6}\)

    \(\Rightarrow {\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^3} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^2}\)

    Now the differential equation is free from radicals

    Degree of highest derivative = 3

    Order and degree of the given differential equation = 4 and 3

  • Question 4
    2 / -0.33
    The value of \(\mathop {\lim }\limits_{{\rm{x}} \to 0} \left( {\frac{{ - \sin {\rm{x}}}}{{2\sin {\rm{x}} + {\rm{x}}\cos {\rm{x}}}}} \right)\) is ________
    Solution

    \(\mathop {\lim }\limits_{{\rm{x}} \to 0} \left( {\frac{{ - \sin {\rm{x}}}}{{2\sin {\rm{x}} + {\rm{x}}\cos {\rm{x}}}}} \right){\rm{}}\left( {\frac{0}{0}{\rm{form}}} \right)\)

    Applying L – Hospital Rule, we get

    \(\mathop {\lim }\limits_{{\rm{x}} \to 0} \left( {\frac{{ - \cos {\rm{x}}}}{{2\cos {\rm{x}} + \cos {\rm{x}} - {\rm{x}}\sin {\rm{x}}}}} \right)\)

    = -1/3

  • Question 5
    2 / -0.33
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {-4 +x^2}&{x \le 3}\\ {-2x + a}&{x > 3} \end{array}} \right.\) is a continuous function for all real values of x, then a is equal to ________.
    Solution

    Concept: 

    A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{a}} \right)\) exists or its graph is a single unbroken curve.

    f(x) is Continuous at x = a ⇔ \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\)

    Calculation:

    For the function to be continuous,

    \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = f\left( 3 \right) = \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\)

    \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {-4 + x^2} \right) = \mathop {\lim }\limits_{x \to 3} \left( {-4 +x^2} \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {-2x +a} \right)\)

    ⇒ - 4 + 32 = - 2 × 3 + a ⇒ 5 = - 6 + a

    ⇒ a = 11

  • Question 6
    2 / -0.33
    Divergence value of a function \({x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\) at x = 2, y = 3 and z = 4 is
    Solution

    Concept:

    The divergence of any vector field  \(\vec A\) is defined as:

    \(Div= \vec \nabla .\vec A\)

    The nabla operator is defined as:

    \(\vec \nabla ={\hat i\frac{\partial }{{\partial x}} + \hat j\frac{\partial }{{\partial y}}}+\hat k\frac{\partial }{\partial z}\)

    Calculation:

    \(f = {x^3}y\vec i - \left( {{z^2} - 2y} \right)\vec j + 5{y^2}z\vec k\)

    \(Div\left( f \right) = \frac{\partial }{{\partial x}}\left( {{x^3}y} \right) + \frac{\partial }{{\partial y}}\left( { - \left( {{z^2} - 2y} \right)} \right) + \frac{\partial }{{\partial z}}\left( {5{y^2}z} \right)\)

    = 3x2y + (+2) + (5y2)

    = 3x2y + 5y2 + 2

    At (2, 3, 4)

    Div (f) = 3(2)2(3) + 5(3)2 + 2

    ∴ Div (f) = 36 + 45 + 2 = 83

  • Question 7
    2 / -0.33

    Which is/are true on the interval [4, 5].of the below given function?

    f(x) = 3x3 – 40.5x2 + 180x + 7

    Solution

    f(x) = 3x3 – 40.5x2 + 180x + 7

    f’(x) = 9x2 – 81x + 180 = 0

    put f’(x) = 0 to find the point at which maximum and minimum value exists

    9x2 – 81x + 180 = 0

    x2 – 9x + 20 = 0

    (x – 5)(x – 4 ) = 0

    ∴ x = 5 or x =4

    Interval [4, 5]

    f'’(x) = 2x – 9

    put x = 4

    f’’(x) = -1 < 0 (maximum value might exist)

    put x = 5

    f’’(x) = 1 > 0 (minimum value might exist)

    Also check border values:

    value of x

    f(x)

     

    4

     3x3 – 40.5x2 + 180x + 7

    = 271

    Maximum value

    5

     3x3 – 40.5x2 + 180x + 7

    = 269.5

    Minimum value


    The minimum value is 269.5

  • Question 8
    2 / -0.33

    If a discrete random variable X has the following probability distribution

    X

    2

    -1

    p(x)

    \(\frac{1}{3}\)

    \(\frac{2}{3}\)


    Evaluate the Standard deviation

    Solution

    Concept:

    \(S.D = \sqrt {E\left( {{X^2}} \right) - {{\left\{ {E\left( X \right)} \right\}}^2}} \)

    Calculation:

    \(E\left( X \right) = 2\left( {\frac{1}{3}} \right) + \left( { - 1} \right)\left( {\frac{2}{3}} \right)\)

    E(X) = 0

    Now,

    \(E\left( {{X^2}} \right) = \sum x_i^2P\left( {{x_i}} \right)\)

    \(E\left( {{X^2}} \right) = {2^2}\left( {\frac{1}{3}} \right) + {\left( { - 1} \right)^2}\left( {\frac{2}{3}} \right)\)

    E(X2) = 2

    We know that,

    \(S.D\;\left( \sigma \right) = \sqrt {E\left( {{X^2}} \right) - {{\left\{ {E\left( X \right)} \right\}}^2}} \) 

    \(\therefore S.D\;\left( \sigma \right) = \sqrt {{2^2} - 2} \)

    σ = √2 = 1.414

  • Question 9
    2 / -0.33
    A third-degree polynomial f(x) has values 2, 5, 16, 44 at x = 0, 1, 2 and 3 respectively. Estimate the value of \(\int\limits_0^3 {f(x)dx} \) by applying Simpson rule
    Solution

    Concept:

    \(\begin{array}{l} \int\limits_0^3 {f(x)dx} = \frac{h}{3}\left[ {\left( {\mathop y\nolimits_0 + \mathop y\nolimits_n } \right) + 4(\mathop y\nolimits_1 + \mathop y\nolimits_3 + ......) + 2(\mathop y\nolimits_2 + \mathop y\nolimits_4 + ......)} \right]\\ \end{array}\)

    Calculation:

    x0123
    f(x)2= y05 = y116 = y244 = y3

     

    \(\begin{array}{l} \int\limits_0^3 {f(x)dx} = \frac{h}{3}\left[ {\left( {\mathop y\nolimits_0 + \mathop y\nolimits_3 } \right) + 4(\mathop y\nolimits_1 ) + 2(\mathop y\nolimits_2 )} \right] = \frac{1}{3}\left[ {\left( {44 + 2} \right) + 4(5) + 2(16)} \right] = 32.67\\ \end{array}\)

     

  • Question 10
    2 / -0.33

    The probability density of a continuous random variable is given by

    P(x) = k e-|x|, -∞ < x < ∞

    Find the value of k.

    Solution

    For a probability density function,

    \(\begin{array}{l}\mathop \smallint \limits_{ - \infty }^\infty p\left( x \right)dx = 1\\\Rightarrow \mathop \smallint \limits_{ - \infty }^\infty k\;{e^{ - \left| x \right|}}dx = 1\end{array}\)

    \(\begin{array}{l}\Rightarrow \mathop \smallint \limits_{ - \infty }^0 k{e^x}\;dx + \mathop \smallint \limits_0^\infty k{e^{ - x}}\;dx = 1\\\Rightarrow \left[ {k{e^x}} \right]_{ - \infty }^0 + \left[ { - k{e^{ - x}}} \right]_0^\infty = 1\end{array}\)

    ⇒ k (1) + [-k (0 – 1)] = 1

    ⇒ k + k = 1

    ⇒ k = 0.5
  • Question 11
    2 / -0.33
    The value of the following definite integral is \(\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \rm \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}dx\)
    Solution

    Concept:

    If f(x)  is even function then f(-x) = f(x)

    If f(x)  is odd function then f(-x) = -f(x)

    Properties of definite integral

    If f(x)  is even function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

    If f(x)  is odd function then \(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} =0\)

    Calculation:

    Let I = \(\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \rm \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}dx\)

    Let f(x) = \( \dfrac{sin^3 \ x \ e^{-x^2}}{x^4}\)

    Replaced x by -x, 

    ⇒ f(-x) = \(\rm \dfrac{sin^3 \ (-x) \ e^{-{(-x)^2}}}{(-x)^4}\)

    As we know sin (-θ) = - sin θ

    \( \dfrac{-sin^3 \ x \ e^{-x^2}}{x^4}\)

    ⇒ f(-x) = -f(x)      

    So, f(x) is odd function

    Therefore, I = 0     

  • Question 12
    2 / -0.33
    A mouse is running on a string whose equation is given by \(y = \frac{2}{3}{x^{3/2}}\). The mouse moves along the string from point A whose x-coordinate is 0 to point B where x = 3. Find the distance ran by the mouse.
    Solution

    Length of curve is given by

    \(L = \mathop \smallint \limits_{x = a}^{x = b} \sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} dx\)

    \(y = \frac{2}{3}{x^{\frac{3}{2}}}\)

    \(\frac{{dy}}{{dx}} = \sqrt x \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)^2} = x\) ---(1)

    \(L = \mathop \smallint \limits_{x = 0}^{x = 3} \sqrt {1 + x} \;dx\)

    \(\left[ {\frac{{{{\left( {x + 1} \right)}^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_0^3\)

    \(= \frac{2}{3}\left[ {{{\left( {x + 1} \right)}^{\frac{3}{2}}}} \right]_0^3\)

    \(= \frac{2}{3}\left[ {{4^{\frac{3}{2}}} - 1} \right]\)

    = 4.62
  • Question 13
    2 / -0.33
    If \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {1 + x}&{if\;x < 0}\\ {\left( {1 - x} \right)\left( {px + q} \right)}&{if\;x \ge 0} \end{array}} \right.\) satisfies the assumptions of Rolle’s Theorem in the interval [-1, 1], the ordered pair (p, q) is
    Solution

    Rolle’s Theorem:

    Suppose f(x) is continuous on [a, b] differentiable on (a, b) and f(a) = f(b). Then there exists some point c ϵ [a, b] such that f'(c) = 0.

    Calculation:

    The given function is continuous and differentiable at x = 0

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ - }} \end{array}f\left( x \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to {0^ + }} \end{array}f\left( x \right)\)

    \( \Rightarrow \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}f\left( {1 + x} \right) = \begin{array}{*{20}{c}} {lt}\\ {x \to 0} \end{array}\left( {1 - x} \right)\left( {px + q} \right)\)

    ⇒ 1 = q

    The function to be differentiable at x = 0

    f'(x = 0) = f'(x = 0+)

    ⇒ 1 = (-1) (px + q) + (1 – x) p

    At, x = 0

    ⇒ 1 = -q + p ⇒ p = 1 + q = 2

    (p, q) = (2, 1)
  • Question 14
    2 / -0.33

    If r̅ = x i̅ + y j̅ + z k̅ then the possible values of \({\nabla ^2}\left[ {\nabla \cdot \left( {\frac{{\bar r}}{{{r^2}}}} \right)} \right] = \)

    Solution

    Explanation:

    \(\nabla \cdot \left( {\phi \vec A} \right) = \left( {\nabla \phi } \right) \cdot \vec A + \phi \left( {\nabla \cdot \vec A} \right)\)

    \(\nabla \cdot \left( {\frac{1}{{{r^2}}} \cdot \vec r} \right) = \left( {\nabla \frac{1}{{{r^2}}}} \right) \cdot \vec r + \frac{1}{{{r^2}}}\left( {\nabla \cdot \vec r} \right)\)

    \(= \left[ {\frac{{ - 2\vec r}}{{{r^4}}}} \right] \cdot \vec r + \frac{3}{{{r^2}}}\;\;\;\;\;\;\;\;\;\;\;\left[ {\because \nabla \;\left( {f\left( r \right)} \right) = \frac{{f'\left( r \right)}}{r}\vec r} \right]\)

    \( = \frac{{ - 2}}{{{r^2}}} + \frac{3}{{{r^2}}}\;\;\;\;\;\;\;\;\;\;\left\{ {\vec r \cdot \vec r = {r^2}} \right\}\)

    \(= \frac{1}{{{r^2}}}\)

    \({\nabla ^2}\left[ {\nabla \cdot \frac{{\vec r}}{{{r^2}}}} \right] = {\nabla ^2}\left[ {\frac{1}{{{r^2}}}} \right]\)

    \( = \frac{6}{{{r^4}}} + \frac{2}{r}\left( {\frac{{ - 2}}{{{r^3}}}} \right)\)

    \(\left[ {{\nabla ^2}\left\{ {f\left( r \right)} \right\} = r''\left( r \right) + \frac{2}{r}f'\left( r \right)} \right]\)

    \(= \frac{6}{{{r^4}}} - \frac{4}{{{r^4}}}\)

    \(= \frac{2}{{{r^4}}} = 2{r^{ - 4}}\)

  • Question 15
    2 / -0.33
    What is the value of y(1) if y(0) = 4 and y’(0) = 9 for the differential equation y’’ + 4y’ + 4y = e2x
    Solution

    Concept:

    Write auxillary equation by replacing

    \(\frac{{{d^n}y}}{{d{x^n}}} = {m^n}\)

    Equate to 0 and solve for (m) (f(m) = 0)

    → for repeated roots m1 = m2 = m (real)

    Complementary function (CF)

    CF = (C1 + C2 x) emx

    → Particular integral (PI) when f(x) = eax

    \(PI = \frac{{{e^{ax}}}}{{f\left( m \right)}}\)

    Replace m by a

    Solution ⇒ y = CF + PI

    Calculation:

    m2 + 4m + 4 = 0

    (m + 2)2 = 0 ⇒ m = -2, -2

    C F = (C1 + C2 x) e-2x

    \(PI = \frac{{{e^{2x}}}}{{{m^2} + 4m + 4}} = \frac{{{e^{2x}}}}{{16}}\)

    ∴ y = (C1 + C2 x) e-2x + e2x / 16

    y(0) = 4 ⇒ 4 = C1 + 1 / 16 ⇒ C1 = 63 / 16

    y = (C1 + C2 x) e-2x + e2x / 16

    \(y'\left( x \right) = - 2\left( {{C_1} + {C_2}x} \right){e^{ - 2x}} + \frac{{2{e^{2x}}}}{{16}} + {C_2}{e^{ - 2x}}\)

    \(y'\left( 0 \right) = - 2{C_1} + \frac{2}{{16}} + {C_2}\) 

    \(9 = - 2 \times \frac{{63}}{{16}} + \frac{2}{{16}} + {C_2}\) 

    \({C_2} = 9 + \frac{{63}}{8} - \frac{1}{8} = 9 + \frac{{62}}{8}\) 

    C2 = 16.75

    C1 = 63 / 16 = 3.9375

    Now,

    \(y = \left( {3.9375 + 1675x} \right){e^{ - 2x}} + \frac{{{e^{2x}}}}{{16}}\) 

    \(\therefore y\left( 1 \right) = \frac{{\left( {3.9375 + 16.75} \right)}}{{{e^2}}} + \frac{{{e^2}}}{{16}}\)

    y(1) = 3.26 

  • Question 16
    2 / -0.33
    The function f(x) = ex – 1 is to be solved using Newton-Raphson method. If the initial value of x0 is taken as 1.0, then the absolute error observed at 2nd iteration is _______.
    Solution

    Concept:

    According to Newton-Raphson Method

    \({X_{n + 1}} = {X_n} - \frac{{f\left( {{X_n}} \right)}}{{f'\left( {{X_n}} \right)}}\)

    Calculation:

    f(x) = ex – 1

    f’(x) = ex

    x0 = 1

    Iteration 1:

    At x0 = 1, f(x) = 1.718

    f'(x) = 2.718

    \({x_1} = {x_0} - \frac{{f\left( {{x_0}} \right)}}{{f'\left( {{x_0}} \right)}}\)

    \( = 1 - \frac{{1.718}}{{2.718}} = 0.3678\)

    Iteration 1:

    At x1 = 0.3678, f(x) = 0.4445

    f'(x) = 1.4445

    \({x_1} = {x_0} - \frac{{f\left( {{x_0}} \right)}}{{f'\left( {{x_0}} \right)}}\)

    \( = 0.3678 - \frac{{0.4447}}{{1.4447}} = 0.06005\)

    By inspection, the actual solution for the given equation is, x = 0

    Therefore, the error = 0.06005

  • Question 17
    2 / -0.33

    For the integral \(\mathop \smallint \nolimits_0^{\pi /2} \left( {8 + 4\cos x} \right)dx,\) the absolute percentage error in numerical evaluation with the Trapezoidal rule, using only the endpoints, is ______

    (round off to one decimal place).
    Solution

    Concept:

    \({\rm{Number\;of\;interval}} = \frac{{{\rm{b}} - {\rm{a}}}}{{\rm{h}}}{\rm{\;}}\)

    where, b is the upper limit, a is the lower limit, h is the step size

    According to the trapezoidal rule

    \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{n}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}{\rm{\;}} \ldots } \right)} \right]\)

    And,

    \(Absolute\;percentage\;error = \frac{{\left| {true\;value - approximate\;value} \right|}}{{true\;value}}\)

    Calculation:

    Given, Number of interval = 1

    a = 0, \({\rm{b\;}} = {\rm{\;}}\frac{\pi }{2}\)

    \(\begin{array}{l}{\rm{Number\;of\;interval}} = \frac{{{\rm{b}} - {\rm{a}}}}{{\rm{h}}}\\ \Rightarrow 1 = \frac{{\frac{{\rm{\pi }}}{2} - 0}}{{\rm{h}}}{\rm{\;}}\\\therefore {\rm{h}} = \frac{{\rm{\pi }}}{2}\end{array}\)

    True value

    \(\mathop \smallint \nolimits_0^{\pi /2} \left( {8 + 4\cos x} \right)dx = \;\left[ {8x + 4sinx} \right]_0^{\frac{\pi }{2}}\)

    \(\Rightarrow {\rm{True\;value}} = \left[ {\left( {8 \times \frac{\pi }{2}} \right) + \left( {4 \times \sin \left( {\frac{\pi }{2}} \right)} \right)} \right]\;\)

    True value = 4π + 4 = 16.56

    Approximate value

    By trapezoidal rule

    xn

    xo = 0

    \({{\rm{X}}_{\rm{n}}}{\rm{\;}} = {\rm{\;}}\frac{\pi }{2}\)

    yn

    yo= 8 + 4 cos 0 = 12

    yn = 8 + 4 cos 90 = 8

     

    \(h = \frac{{\left( {\frac{\pi }{2} - 0} \right)}}{1} = \frac{\pi }{2}\)

    According to the trapezoidal rule

    \(\begin{array}{l}\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{n}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}{\rm{\;}} \ldots } \right)} \right]\\\mathop \smallint \limits_0^{\frac{{\rm{\pi }}}{2}} \left( {8{\rm{\;}} + 4{\rm{cosx}}} \right){\rm{dx\;}} = \frac{{\rm{\pi }}}{4}\left( {12 + 8} \right)\end{array}\)

    ⇒  Approximate value = 5π = 15.70

    Now,

    \(\begin{array}{l}Absolute\;percentage\;error = \frac{{\left| {true\;value - approximate\;value} \right|}}{{true\;value}}\\Absolute\;percentage\;error = \frac{{\left| {16.56 - 15.70} \right|}}{{16.56}} \times 100\end{array}\)

    ∴ Absolute percentage error = 5.19 %

  • Question 18
    2 / -0.33

    Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\)

    Which of the following are the Eigenvectors of the matrix (A3 + 5I)?

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\)

    \(\left[ {A - \lambda I} \right] = \left[ {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right]\)

    |A - λI|= 0

    \( \Rightarrow \left| {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right| = 0\)

    ⇒ (1 - λ) (2 - λ) (1 - λ) – 2(1 - λ) = 0

    ⇒ (1 - λ) (- λ) (3 - λ) = 0

    ⇒ λ = 0, 1, 3

    Eigen values of A are = 0, 1, 3

    For λ1 = 0:

    A x1 = λ1x1

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = 0\)

    ⇒ x1 – x2 = 0, -x1 + 2x2 – x3 = 0, -x2 + x3 = 0

    ⇒ x1 = x2 = x3

    Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\K\\K\end{array}} \right]\)

    For K = 1, \({x_1} = \left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right]\)

    For λ2 = 1

    Ax2 = λ2x2

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right]\)

    ⇒ x1 – x2 = x1, -x1 + 2x2 – x3 = x2, -x2 + x3 = x3

    ⇒ -x1 = x3 and x2 = 0

    Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\0\\{ - K}\end{array}} \right]\)

    For K = 1, \({x_2} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 1}\end{array}} \right]\)

    For λ3 = 3

    Ax3 = λ3x3

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{3{x_1}}\\{3{x_2}}\\{3{x_3}}\end{array}} \right]\)

    ⇒ x1 – x2 = 3x1, -x1 + 2x2 – x3 = 3x2, -x2 + x3 = 3x3

    ⇒ x2 = -2x3, x1 = x3

    Eigen vector \( = \left[ {\begin{array}{*{20}{c}}K\\{ - 2K}\\K\end{array}} \right]\)

    For K = 1, \({x_3} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right]\)

    The Eigen vectors of (A3 + 5I) are same as the Eigen vectors of A.

  • Question 19
    2 / -0.33

    A system comprising of n identical components works if at least one of the components works. Each of the components works with probability 0.8, independent of all other components. The minimum value of n for which the system works with probability at least 0.97 is ________.

    Solution

    Probability of the component to function (p) = 0.8

    Probability of the component do not function (q) = 0.2

    Minimum probability of functioning the system = 0.97

    ⇒ 1 – probability that no component functions ≥ 0.97

    ⇒ P(x = 0) ≤ 0.03

    \( \Rightarrow {}_\;^n{C_0}{\left( p \right)^0}{\left( q \right)^n} \le 0.03\)

    \( \Rightarrow {}_\;^n{C_0}{\left( {0.8} \right)^0}{\left( {0.2} \right)^n} \le 0.03\)

    ⇒ (0.2)n ≤ 0.03

    The minimum value n so that the above condition holds = 3.

  • Question 20
    2 / -0.33

    Consider the differential equation and choose the correct statements

    \({x^2}y'' + 6xy' + 6y = x\)

    Solution

    Explanation:

    Given: \({x^2}{y^{11}} + 6x{y^I} + 6y = x\) 

    Now,

    D(D – 1)y + 6Dy + 6y = et, where \(D = \frac{d}{{dt}}\) 

    Put x = et, t = ln x

    ⇒ (D2 + 5D + 6) y = et

    Auxillary Equation is D2 + 5D + 6 = 0

    Solving the above Equation we get roots as -2, -3

    Now,

    \(CF = {c_1}{e^{ - 2t}} + {c_2}{e^{ - 3t}}\)

    \(CF = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}}\)

    \(\therefore {\rm{The\;complementary\;function\;is\;}}\left( {C.F.} \right) = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}}\)

    Now,

    \(P.I = \frac{1}{{\left( {{D^2} + 5D + 6} \right)}}{e^t}\)

    \(P.I. = \frac{{{e^t}}}{{\left( {{1^2} + 5 \times 1 + 6} \right)}} = \frac{{{e^t}}}{{12}}\)

    \(\therefore P.I = \frac{x}{{12}}\)

    \(\therefore {\rm{The\;particular\;integral\;is\;}}\frac{x}{{12}}\)

    Now,

    ∴ The general solution is equal to C.F. + P.I.

    \(\therefore y = \frac{{{c_1}}}{{{x^2}}} + \frac{{{c_2}}}{{{x^3}}} + \frac{x}{{12}}\)

  • Question 21
    2 / -0.33
    If C is the path along the curve y = x2 – 4x + 4 from (0, 4) to (2, 0), then \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) is
    Solution

    Concept:

    Line Integral:

    Any integral which is to be evaluated along a closed curve path 'C' is called line integral. The line integral of a vector function \(\vec F\)along a curve 'C' is given by- curve can be closed or open.

    \(\int_{c}^{}\vec{F}.\vec{dr}=\int_{c}^{}(F_1dx\;+\;F_2dy\;+\;F_3dz)\)

    Calculation:

    Given:

    \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) and y = x2 – 4x + 4

    ∴ dy = 2x dx – 4 dx = (2x - 4)dx

    \(\vec F=y\hat i\;-\;3x\hat j\;\;and\;\;\overrightarrow {dr} = dx\;\hat i + dy\;\hat j\)

    \(\)\(\therefore\;\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \left( {dx\;\hat i + dy\;\hat j} \right)\)

    \( \therefore\;\mathop \oint \nolimits_C ydx - 3x\;dy\)

    \( \therefore\;\mathop \oint \nolimits_C \left( {{x^2} - 4x + 4} \right)dx - 3x\left( {2x - 4} \right)dx\)

    \(\therefore\;\mathop \oint \nolimits_C \left( { - 5{x^2} + 8x + 4} \right)dx\)

    The point given is (0, 4) and (2, 0)

    x varies from 0 → 2 and y varies 4 → 0.

    \(\mathop \smallint \limits_{x = 0}^2 \left( { - 5{x^2} + 8x + 4} \right)dx\)

    \( \therefore\;\left[ {\frac{{ - 5{x^3}}}{3} + 4{x^2} + 4x} \right]_0^2\)

    \(\therefore\;\frac{{ - 5}}{3}\left( 8 \right) + 4\left( 4 \right) + 4\left( 2 \right)\)

    \(\therefore\;\frac{{ - 40}}{3} + 24 \Rightarrow \frac{{32}}{3}\)

  • Question 22
    2 / -0.33

    Let \(P = \left[ {\begin{array}{*{20}{c}}1&1&{ - 1}\\2&{ - 3}&4\\3&{ - 2}&3\end{array}} \right]\;and\;Q = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}&{ - 1}\\6&{12}&6\\5&{10}&5\end{array}} \right]\) be two matrices.

    Then the rank of P + Q is ______.

    Solution

    Concept:

    The rank of a matrix is defined as the maximum number of linearly independent column vectors in the matrix or the maximum number of linearly independent row vectors in the matrix.

    In terms of determinant, rank of a matrix can be viewed as m where m is the size of the largest non- zero m × m submatrix with non-zero determinant.

    Calculation:  

    \(P = \left[ {\begin{array}{*{20}{c}}1&1&{ - 1}\\2&{ - 3}&4\\3&{ - 2}&3\end{array}} \right]\;and\;Q = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}&{ - 1}\\6&{12}&6\\5&{10}&5\end{array}} \right]\)

    \(Let\;X = P + Q = \;\left[ {\begin{array}{*{20}{c}}0&{ - 1}&{ - 2}\\8&9&{10}\\8&8&8\end{array}} \right]\)

    \(\left| X \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}&{ - 2}\\8&9&{10}\\8&8&8\end{array}} \right|\)

    |X| = 0 (72 – 80) – (–1) (64 – 80) – 2(64 – 72) 

    ∴ |X| = 0 + (–16) + 16 = 0

    Rank of 3 × 3 matrix is zero.

    ∴ Rank(X) ≠ 3

    \(\left| {\begin{array}{*{20}{c}}0&{ - 1}\\8&9\end{array}} \right| = 8 \ne 0\)

    Determinant of 2 × 2 matrix is nonzero. So, rank of X is 2.
  • Question 23
    2 / -0.33

    Using the Fourier expansion of \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{0\; - \pi \le x \le 0}\\{\sin x\;0 \le x \le \pi \;}\end{array}} \right.\) 

    Find the sum of series,

    \(\frac{1}{{1.3}} - \frac{1}{{3.5}} + \frac{1}{{5.7}} - \frac{1}{{7.9}} + \ldots \infty \) (Correct up to 3 decimal).
    Solution

    Concept:

    Fourier series of f(x)

    \(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos \frac{{n\pi x}}{L} + \mathop \sum \limits_{n = 1}^\infty {n_n}\sin \frac{{n\pi x}}{l}\)

    \({a_0} = \frac{1}{l}\mathop \smallint \limits_{ - L}^L f\left( x \right)dx,\;{a_n} = \frac{1}{l}\mathop \smallint \limits_{ - l}^l f\left( x \right)\cos \frac{{n\pi x}}{L}\;dx,\;{b_n} = \frac{1}{l}\;\mathop \smallint \limits_{ - L}^L f\left( x \right)\sin \frac{{n\pi x}}{L}dx\)

    Calculation:

    \({a_0} = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)dx = \frac{1}{\pi }\;\mathop \smallint \limits_0^\pi \sin x\;dx = \frac{2}{\pi }\)

    \({a_n} = \frac{1}{\pi }\mathop \smallint \limits_0^\pi \sin x\cos nx\;dx = \frac{1}{{2\pi }}\mathop \smallint \limits_0^\pi [\sin \left( {n + 1} \right)x - \sin \left( {n - 1} \right)x]\;dx\)

    \({a_n} = \frac{1}{{2\pi }}\left[ { - \frac{{\cos \left( {n + 1} \right)x}}{{n + 1}} + \frac{{\cos \left( {n - 1} \right)x}}{{n - 1}}} \right]_0^\pi \)

    = 0, n is odd and \(\frac{{ - 2}}{{\pi \left( {{n^2} - 1} \right)}}\), n is even

    Now,

    \({b_n} = \frac{1}{\pi }\mathop \smallint \limits_0^\pi \sin x\sin n\;x\;dx\)

    \({b_n} = \frac{1}{{2\pi }}\mathop \smallint \limits_0^\pi \left[ {\cos \left( {n - 1} \right)x - \cos \left( {n + 1} \right)x} \right]dx\)

    \({b_n} = \frac{1}{{2\pi }}\left[ {\frac{{\sin \left( {n - 1} \right)x}}{{n - 1}} - \frac{{\sin \left( {n + 1} \right)x}}{{n + 1}}} \right]_0^\pi = 0\left( {n \ne 1} \right)\)

    When n = 1

    \({b_1} = \frac{1}{2}\)

    \(\therefore f\left( x \right) = \frac{1}{\pi } - \frac{2}{\pi }\left[ {\frac{{\cos 2x}}{{{2^2} - 1}} + \frac{{\cos 4x}}{{{4^2} - 1}} + \ldots } \right] + \frac{1}{2}\sin x\)

    \({\rm{Put\;}}x = \frac{\pi }{2}\)

    \( \Rightarrow 1 = \frac{1}{\pi } - \frac{2}{\pi }\left( { - \frac{1}{{1.3}} + \frac{1}{{3.5}} - \frac{1}{{5.7}} + \ldots \infty } \right) + \frac{1}{2}\)

    \(\therefore \frac{1}{{1.3}} - \frac{1}{{3.5}} + \frac{1}{{5.7}} - \ldots \infty = \frac{1}{4}\left( {\pi - 2} \right) = 0.285\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now