\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\)
\(\left[ {A - \lambda I} \right] = \left[ {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right]\)
|A - λI|= 0
\( \Rightarrow \left| {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right| = 0\)
⇒ (1 - λ) (2 - λ) (1 - λ) – 2(1 - λ) = 0
⇒ (1 - λ) (- λ) (3 - λ) = 0
⇒ λ = 0, 1, 3
Eigen values of A are = 0, 1, 3
For λ1 = 0:
A x1 = λ1x1
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = 0\)
⇒ x1 – x2 = 0, -x1 + 2x2 – x3 = 0, -x2 + x3 = 0
⇒ x1 = x2 = x3
Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\K\\K\end{array}} \right]\)
For K = 1, \({x_1} = \left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right]\)
For λ2 = 1
Ax2 = λ2x2
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right]\)
⇒ x1 – x2 = x1, -x1 + 2x2 – x3 = x2, -x2 + x3 = x3
⇒ -x1 = x3 and x2 = 0
Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\0\\{ - K}\end{array}} \right]\)
For K = 1, \({x_2} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 1}\end{array}} \right]\)
For λ3 = 3
Ax3 = λ3x3
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{3{x_1}}\\{3{x_2}}\\{3{x_3}}\end{array}} \right]\)
⇒ x1 – x2 = 3x1, -x1 + 2x2 – x3 = 3x2, -x2 + x3 = 3x3
⇒ x2 = -2x3, x1 = x3
Eigen vector \( = \left[ {\begin{array}{*{20}{c}}K\\{ - 2K}\\K\end{array}} \right]\)
For K = 1, \({x_3} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right]\)
The Eigen vectors of (A3 + 5I) are same as the Eigen vectors of A.