Concept:
Ground coordinate of A = XA = \(\frac{{{\rm{H}} - {\rm{\;}}{{\rm{h}}_{\rm{A}}}}}{{\rm{f}}} \times {{\rm{x}}_{\rm{a}}}\) and YA = \(\frac{{{\rm{H}} - {\rm{\;}}{{\rm{h}}_{\rm{A}}}}}{{\rm{f}}} \times {{\rm{y}}_{\rm{a}}}\)
Ground coordinate of B = XB = \(\frac{{{\rm{H}} - {\rm{\;}}{{\rm{h}}_{\rm{B}}}}}{{\rm{f}}} \times {{\rm{x}}_{\rm{b}}}\) and YB = \(\frac{{{\rm{H}} - {\rm{\;}}{{\rm{h}}_{\rm{B}}}}}{{\rm{f}}} \times {{\rm{y}}_{\rm{b}}}\)
xa, ya, xb, yb are the photo coordinates,
H is the flying height and f is the focal length.
Horizontal length of the line AB in the ground = \(\sqrt {{{\left( {{{\rm{X}}_{\rm{B}}} - {{\rm{X}}_{\rm{A}}}} \right)}^2} + {\rm{\;}}{{\left( {{{\rm{Y}}_{\rm{B}}} - {{\rm{Y}}_{\rm{A}}}} \right)}^2}} \)
Calculation
Given:
xa = +50 mm, ya = +40 mm, xb = - 60 mm, yb = - 90 mm
The elevations of point A and B are 300 m and 400 m
i.e., hA and hB are 300 m and 400 m
focal length (f) = 150 mm
XA = 400 m
In order to find the ground level coordinates, we first need to determine the value of flying height which is not given directly in the question. But we know the value of ground level coordinate of A using which the flying height can be determined.
XA = \(\frac{{{\rm{H}} - {{\rm{h}}_{\rm{A}}}}}{{\rm{f}}} \times {{\rm{x}}_{\rm{a}}} \Rightarrow H = \frac{{{\rm{f}} \times {{\rm{X}}_{\rm{A}}}}}{{{{\rm{x}}_{\rm{a}}}}} + {{\rm{h}}_{{\rm{A}}}} = \frac{{150 \times 400}}{{50}} + 300 = 1500{\rm{\ m}}\)
∴ The flying height is 1500m.
Now the other ground level coordinates can be determined.
\({Y_A} = \frac{{{\rm{H}} - {{\rm{h}}_{\rm{A}}}}}{{\rm{f}}} \times {{\rm{y}}_{\rm{a}}} = \frac{{1500 - 300}}{{150}} \times 40 = 320\;{\bf{m}}\)
\({X_B} = \frac{{{\rm{H}} - {{\rm{h}}_{\rm{B}}}}}{{\rm{f}}} \times {{\rm{x}}_{\rm{b}}} = \frac{{1500 - 400}}{{150}} \times - 60 = - 440\;{\bf{m}}\)
\({Y_B} = \frac{{{\rm{H}} - {{\rm{h}}_{\rm{B}}}}}{{\rm{f}}} \times {{\rm{y}}_{\rm{b}}} = \frac{{1500 - 400}}{{150}} \times - 90 = - 660\;{\bf{m}}\)
Horizontal length of the line AB in the ground = \(\sqrt {{{\left( {{{\rm{X}}_{\rm{B}}} - {{\rm{X}}_{\rm{A}}}} \right)}^2} + {{\left( {{{\rm{Y}}_{\rm{B}}} - {{\rm{Y}}_{\rm{A}}}} \right)}^2}}=\sqrt {{{\left( { - 440 - 400} \right)}^2} + {{\left( { - 660 - 320} \right)}^2}} \) = 1290.7 m
∴ Option a), b) and c) are correct.