Height of sand layer above water table = Z1 = 4 m, and height of saturated layer = 12 – 4 = 8 m
Depth of point X, where pressure is to be computed = 10 m
Height of saturated layer above X = Z2 = 10 – 4 = 6 m
Now \({{\text{ }\!\!\gamma\!\!\text{ }}_{\text{d}}}=\frac{\text{G}\times {{\text{ }\!\!\gamma\!\!\text{ }}_{\text{w}}}}{1+\text{e}}=\frac{2.65\times 9.81}{1+0.7}=15.29\text{ }\!\!~\!\!\text{ kN}/{{\text{m}}^{3}}\)
For sand above water table:
\(\text{w}=\frac{\text{e}\times {{\text{S}}_{\text{r}}}}{\text{G}}=\frac{0.7\times 0.5}{2.65}=0.132\)
γ1 = γd (1 + w) = 15.29 × 1.132 = 17.31 kN/m3
For saturated sand below water table:
\({{\text{w}}_{\text{sat}}}=\frac{\text{e}}{\text{G}}=\frac{0.7}{2.65}=2.64\)
γ2 = γd (1 + wsat) = 15.29 × 1.264 = 19.33 kN/m3
γ2’ = 19.33 – 9.81 = 9.52 kN/m3
Effective pressure at X
σ = Z1 γ1 + Z2 γ2 = 4 × 17.31 + 6 × 19.33 = 185.22 kN/m2
u = hw γw = 6 × 9.81 = 58.86 kN/m2
σ’ = σ – u = 185.22 – 58.86 = 126.36 kN/m2
∴ σ’ = σ – u = 185.22 – 58.86 = 126.36 kN/m2
Effective stress at X after capillary rise
σ' = 3 γ1 + (6 + 1) γ2’ + hc γw = (3 × 17.31) + (7 × 9.52) + (1 × 9.81) = 128.38 kN/m2
∴ Increase in pressure = 128.38 – 126.36 = 2.02 kN/m2