Concept:
The optimum cycle length (Co) is given by:
\({{\rm{C}}_{\rm{o}}} = \frac{{1.5{\rm{L}} + 5}}{{1 - {\rm{Y}}}}\)
And effective green time for each phase is given by:
\({{\rm{G}}_{\rm{a}}} = \frac{{{{\rm{y}}_{\rm{a}}}}}{{\rm{Y}}} \times \left( {{{\rm{C}}_{\rm{o}}} - {\rm{L}}} \right)\)
Calculation:
Given:
Normal flow on roads A & B: qa = 400 PCU/hr and qb = 250 PCU/hr, Saturation flow: Sa = 1250 and Sb = 1000 PCU/hr, All – red time (R) = 12 sec, and number of phases (n) = 2
\(\therefore {{\rm{y}}_{\rm{a}}} = \frac{{{{\rm{q}}_{\rm{a}}}}}{{{{\rm{S}}_{\rm{a}}}}} = \frac{{400}}{{1250}} = 0.32{\rm{\;and\;}}{{\rm{y}}_{\rm{b}}} = \frac{{{{\rm{q}}_{\rm{b}}}}}{{{{\rm{S}}_{\rm{b}}}}} = \frac{{250}}{{100}} = 0.25\)
Y = ya + yb = 0.32 + 0.25 = 0.57
L = 2n + R = 2 × 2 + 12 = 16 sec
Optimum cycle time,
\({{\rm{C}}_{\rm{o}}} = \frac{{1.5{\rm{L}} + 5}}{{1 - {\rm{Y}}}} = \frac{{1.5 \times 16 + 5}}{{1 - 0.57}} + \frac{{29}}{{0.43}} = 67.4{\rm{\;s}} \approx 67.5{\rm{\;sec}}\)
\({{\rm{G}}_{\rm{a}}} = \frac{{{{\rm{y}}_{\rm{a}}}}}{{\rm{Y}}} \times \left( {{{\rm{C}}_{\rm{O}}} - {\rm{L}}} \right) = \frac{{0.32}}{{0.57}}\left( {67.5 - 16} \right) = 29{\rm{\;sec}}\)
\({{\rm{G}}_{\rm{b}}} = \frac{{{{\rm{y}}_{\rm{b}}}}}{{\rm{Y}}} \times \left( {{{\rm{C}}_{\rm{O}}} - {\rm{L}}} \right) = \frac{{0.25}}{{0.57}}\left( {67.5 - 16} \right) = 22.5{\rm{\;sec}}\)
∴ Effective green time for each phase A and phase B respectively are 29 seconds and 22.5 seconds respectively.