Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    If \(\vec R\left( t \right)\) is a vector having constant magnitude, then the correct statement is

  • Question 2
    1 / -0

    Which of the following is/are true?

    1. \(\nabla \times \left( {\nabla \times {\rm{\vec V}}} \right) = 0\)

    2. \(\nabla \times \left( {\nabla \times {\rm{\vec V}}} \right) = \nabla \left( {\nabla .{\rm{\vec V}}} \right) - {\nabla ^2}{\rm{\vec V}}\)

    3. \(\nabla .\left( {\nabla \times {\rm{\vec V}}} \right) = 0\)

  • Question 3
    1 / -0

    A triangle defined by A(2, -5, 1), B(0, 2, 4) and C(0, 3, 1). What is area of the triangle?

  • Question 4
    1 / -0

    Consider an incompressible flow velocity given as

    \(\vec V = \left( {2x + 3y + 4z} \right)\hat i + \left( {5x + cy + 6z} \right)\hat j + \left( {8x + 9y} \right)\hat k\) 

    The value of constant C is-

  • Question 5
    1 / -0

    The linear velocity profile at any section is given as-

    \(\vec V = \left( {2{x^2}y} \right)\hat i + \left( {xy{z^2}} \right)\hat j + \left( {xy} \right)\hat k\)

    The magnitude of angular velocity at a point P (1, 1, 1) is

  • Question 6
    1 / -0

    If f(x, y, z) = x2y + y2z + z2x for all (x, y, z) ϵ R3 and \(\nabla = \frac{\partial }{{\partial x}}i + \frac{\partial }{{\partial y}}j + \frac{\partial }{{\partial z}}k\), then the value of ∇.(∇ × ∇f) + ∇.(∇f) at (1, 1, 1) is

  • Question 7
    1 / -0

    If the function F is solenoid and \(\rm \left| {\vec F} \right| = {r^{n - 1}}\), then value of \(\rm n\) will be –

  • Question 8
    1 / -0

    For a position vector \(\vec r = x\hat i + y\hat j + zk\) the norm of the vector can be defined as \(\left| {\vec r} \right| = \sqrt {{x^2} + {y^2} + {z^2}}\). Given a function \(\phi = \ln \left| {\vec r} \right|\), its gradient ∇ϕ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now