Concept:
Angular velocity = \(\frac{1}{2} \times \;\)Curl of Linear velocity
i.e. \(\omega = \frac{1}{2} \times \left( {\vec \nabla \times \vec V} \right)\)
The curl is a vector operator that describes the infinitesimal rotation of a vector field in three-dimensional space.
The curl of a scalar field is undefined. It is defined only for 3D vector fields.
\(Curl = \nabla \times F = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_1}}&{{F_2}}&{{F_3}} \end{array}} \right|\)
Calculation:
\(\vec V = 2{x^2}y\hat i + xy{z^2}\hat j + xy\hat K\)
\(\therefore \vec \nabla \times \vec V = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {2{x^2}y}&{xy{z^2}}&{xy} \end{array}} \right|\)
= î (x – 2xyz) – ĵ (y - 0) + k̂ (yz2 – 2x2)
\(\therefore {\left( {\vec \nabla \times \vec V} \right)_{1,1,1}} = i\left( {1 - 2} \right) - \hat j\left( {1 - 0} \right) + \hat k\left( {1 - 2} \right)\) = -i – j – k
\( \Rightarrow \omega = \frac{1}{2}\left( { - i - \hat j - k} \right)\)
\(\therefore \left| \omega \right| = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 3 }}{2}\;units\)