Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    Which of the following represent the Green's theorem 

  • Question 2
    1 / -0

    The value of

    \(\mathop \smallint \nolimits_S^{} \left( {x + z} \right)dydz + \left( {y + z} \right)dxdz + \left( {x + y} \right)dxdy,\) 

    Where ‘S’ is the surface of the sphere

    x2 + y2 + z2 = 4, is ______

  • Question 3
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

  • Question 4
    1 / -0

    If F = 3y î – xz ​ĵ + yz2 k̂ and S is the surface of the paraboloid 2z = x2 + y2 bounded by z = 8, evaluate \(\mathop \int\!\!\!\int \limits_s^\; \left( {\nabla \times F} \right).ds\)

  • Question 5
    1 / -0

    The value of the integral

    \(\mathop \oint \nolimits_s \vec r.\vec n\;ds\)

    over the closed surface S bounding a volume V, where \(\vec r = x i + y j + z k\) is the position vector and n̂ is normal to the surface S, is

  • Question 6
    1 / -0

    Suppose C is any curve from (0, 0, 0) to (1, 1, 1) and \(\vec F\left( {x,\;y,\;z} \right) = \left( {4z + 5y} \right)\hat i + \left( {3z + 5x} \right)\hat j + \left( {3y + 4x} \right)\hat k\). Compute the line integral \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \)

  • Question 7
    1 / -0

     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.

  • Question 8
    1 / -0

    The volume of an object expressed as spherical co-ordinate is given by

    V = \(\mathop \smallint \limits_0^{2 \pi } \mathop \smallint \limits_0^{\frac{{2 \pi }}{3}} \mathop \smallint \limits_0^2 {{\rm{r}}^3}{\rm{co}}{{\rm{s}}^2}\phi {\rm{drd}}\phi {\rm{d\theta }}\)

    The value of the integral is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now