\(\begin{array}{l} {\rm{V}} = \mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{{2\pi }}{3}} \mathop \smallint \limits_0^2 {{\rm{r}}^3}{\rm{co}}{{\rm{s}}^2}\phi {\rm{drd}}\phi {\rm{d\theta }}\\ {\rm{V}} = \mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{{2\pi }}{3}} \left[ {\frac{{{r^4}}}{4}} \right]_0^2{\rm{co}}{{\rm{s}}^2}\phi {\rm{d}}\phi {\rm{d\theta }}\\ {\rm{V}} = \mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{{2\pi }}{3}} 4.{\rm{co}}{{\rm{s}}^2}\phi {\rm{d}}\phi {\rm{d\theta }} \end{array}\)
\(\begin{array}{l} {\rm{Co}}{{\rm{s}}^2}\phi = \frac{{1 + {\rm{cos}}2\phi }}{2}\\ {\rm{V}} = 4\mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{{2\pi }}{3}} \left( {\frac{{1 + Cos2\phi }}{2}} \right){\rm{d}}\phi {\rm{d\theta }}\\ {\rm{V}} = 2\mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{{2\pi }}{3}} \left( {1 + Cos2\phi } \right){\rm{d}}\phi {\rm{d\theta }} \end{array}\)
\(\begin{array}{l} {\rm{V}} = 2\mathop \smallint \limits_0^{2\pi } \left[ {\phi + \frac{{sin2\phi }}{2}} \right]_0^{\frac{{2\pi }}{3}}d\theta \\ {\rm{V}} = 2\mathop \smallint \limits_0^{2\pi } \left[ {\frac{{2\pi }}{3} + \frac{{sin\left( {\frac{{2 \times 2\pi }}{3}} \right)}}{2}} \right]d\theta \\\end{array}\)
\(V = \left[ {\frac{{4\pi }}{3} + \;\sin \frac{{4\pi }}{3}} \right]\left[ \theta \right]_0^{2\pi }\)
\(V = \left[ {\frac{{4\pi }}{3} + \;\sin \frac{{4\pi }}{3}} \right]2\pi \)
\(V = \left[ {\frac{{8{\pi ^2}}}{3} + \;2{\rm{\pi \;}}\sin \frac{{4\pi }}{3}} \right]\)
\(V = \left[ {\frac{{8{\pi ^2}}}{3} + \;2\pi \left[ {\frac{{ - \sqrt 3 }}{2}} \right]} \right]\)
\(V = \left[ {\frac{{8{\pi ^2}}}{3} - \;\pi \sqrt 3 } \right]\)