Concept:
Cauchy-Euler Equation:
The homogeneous linear differential equations in form of \({{\rm{x}}^{\rm{n}}}\frac{{{{\rm{d}}^{\rm{n}}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}} + {{\rm{a}}_1}{{\rm{x}}^{{\rm{n}} - 1}}\frac{{{{\rm{d}}^{{\rm{n}} - 1}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{{\rm{n}} - 1}}}} + \ldots + {{\rm{a}}_{{\rm{n}} - 1}}{\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{a}}_{\rm{n}}}{\rm{y}} = {\rm{b}}\left( {\rm{x}} \right)\) is known as Cauchy-Euler Equation, where
are constants and b(x) is either a function of x or a constant. The solution of these equations can be easily obtained by substituting \({\rm{x}} = {{\rm{e}}^{\rm{t}}}\) and this will give the following results:
\({\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {\rm{Dy}},{\rm{\;\;\;\;}}{{\rm{x}}^2}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right){\rm{y}},{\rm{\;\;}}{{\rm{x}}^3}\frac{{{{\rm{d}}^3}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^3}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right)\left( {{\rm{D}} - 2} \right),{\rm{\;\;}} \ldots ,{\rm{\;\;}}{{\rm{x}}^{\rm{n}}}\frac{{{{\rm{d}}^{\rm{n}}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right) \ldots \left( {{\rm{D}} - \left( {{\rm{n}} - 1} \right)} \right){\rm{y}}\)
where D =d/dt operator.
Rules for finding Particular Integral (P.I.) for exponential function:
Particular integral of \(\left\{ {{\rm{f}}\left( {\rm{D}} \right)} \right\}{\rm{y}} = {\rm{\;}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;}}\) is calculated by,
\(\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = \frac{1}{{{\rm{f}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;provided\;f}}\left( {\rm{a}} \right) \ne 0{\rm{\;\;}}\)
\({\rm{If\;f}}\left( {\rm{a}} \right) = 0,{\rm{\;then\;P}}.{\rm{I}}.{\rm{\;is\;calculated\;as\;}}\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = {\rm{x}}\frac{1}{{{\rm{f'}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;\;provided\;f'}}\left( {\rm{a}} \right) \ne 0{\rm{\;and\;so\;on}}.{\rm{\;\;}}\)
Calculation:
The given equation can be rearranged as, \({{\rm{x}}^2}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + 2{\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 6{\rm{y\;}} = 7{{\rm{x}}^4}\). So, it is in the form of Cauchy-Euler Equation. So, by substituting \({\rm{x}} = {{\rm{e}}^{\rm{t}}}\) we get,
\(\left[ {{\rm{D}}\left( {{\rm{D}} - 1} \right) + 2{\rm{D}} - 6} \right]{\rm{y}} = 7{{\rm{e}}^{4{\rm{t}}}}{\rm{\;}} \Rightarrow \left( {{{\rm{D}}^2} + {\rm{D}} - 6} \right){\rm{y}} = 7{{\rm{e}}^{4{\rm{t}}}}{\rm{\;\;where\;D}} = \frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{operator}}\)
So, the auxiliary equation is, \({{\rm{D}}^2} + {\rm{D}} - 6 = 0 \Rightarrow {\rm{D}} = - 3,{\rm{\;}}2\)
\(\therefore {\rm{\;The\;Complementary\;function}}\left( {{\rm{C}}.{\rm{F}}.} \right) = {\rm{\;A}}{{\rm{e}}^{2{\rm{t}}}} + {\rm{B}}{{\rm{e}}^{ - 3{\rm{t}}}}\)
\(\therefore {\rm{\;The\;Particular\;integral\;}}\left( {{\rm{P}}.{\rm{I}}.} \right) = \frac{1}{{{{\rm{D}}^2} + {\rm{D}} - 6}}7{{\rm{e}}^{4{\rm{t}}}} = 7 \times \frac{1}{{{4^2} + 4 - 6}}{{\rm{e}}^{4{\rm{t}}}} = \frac{{{{\rm{e}}^{4{\rm{t}}}}}}{2}\)
\(\therefore {\rm{\;The\;total\;solution}},{\rm{y}} = {\rm{C}}.{\rm{F}}.{\rm{\;}} + {\rm{P}}.{\rm{I}}.{\rm{\;}} = {\rm{\;A}}{{\rm{e}}^{2{\rm{t}}}} + {\rm{B}}{{\rm{e}}^{ - 3{\rm{t}}}} + \frac{{{{\rm{e}}^{4{\rm{t}}}}}}{2}{\rm{\;}} \Rightarrow {\rm{y}} = {\rm{A}}{{\rm{x}}^2} + \frac{{\rm{B}}}{{{{\rm{x}}^3}}} + \frac{1}{2}{{\rm{x}}^4}\)
\({\rm{Given}},{\rm{\;y\;}} = {\rm{\;}}0{\rm{\;\;at\;x\;}} = {\rm{\;}}1{\rm{\;}}\therefore 0 = {\rm{A}} \times {1^2} + \frac{{\rm{B}}}{{{\rm{\;}}{1^3}}} + \frac{1}{2} \Rightarrow {\rm{A}} + {\rm{B}} = {\rm{\;}} - 0.5\)
\({\rm{Given}},{\rm{\;y\;}} = {\rm{\;}}1{\rm{\;\;at\;x\;}} = {\rm{\;}} - 1{\rm{\;}}\therefore 1 = {\rm{A}} \times {\left( { - 1} \right)^2} + \frac{{\rm{B}}}{{{{\left( { - {\rm{\;}}1} \right)}^3}}} + \frac{1}{2} \times 1 \Rightarrow {\rm{A}} - {\rm{B}} = {\rm{\;}}0.5{\rm{\;\;\;\;}}\therefore {\rm{A}} = 0{\rm{\;}}\& \;\;B = - 0.5\)
\(\therefore {\rm{y}}\left( {\rm{x}} \right) = \frac{1}{2}\left( {{{\rm{x}}^4} - \frac{1}{{{{\rm{x}}^3}}}} \right){\rm{\;\;\;}}\therefore {\rm{\;y}}\left( 2 \right) = \frac{1}{2}\left( {{2^4} - \frac{1}{{{2^3}}}} \right) = 7.9375\)