Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 6

Result Self Studies

Engineering Mathematics Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The order and degree of the differential equation \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\) respectively are
    Solution

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Highest derivative in the given differential equation is 4

    Hence order is 4.

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \({\left[ {{{\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)}^{\frac{1}{2}}}} \right]^6} = {\left[ {{{\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]}^{\frac{1}{3}}}} \right]^6}\)

    \(\Rightarrow {\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^3} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^2}\)

    Now the differential equation is free from radicals

    Degree of highest derivative = 3

    Order and degree of the given differential equation = 4 and 3

  • Question 2
    1 / -0

    Consider the following four differential equations:

    EQ 1:  \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - {\rm{y}} = {\rm{\pi }}\)

    EQ 2: \({\rm{\;}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} + 3{\rm{y}} = 36\)

    EQ 3:  \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + 5\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + 6{\rm{y}} = {\rm{\;\;}}0\)

    EQ 4: \({\rm{\;}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}} = {\rm{tany}}\)

    Among these four differential equations which is/are linear differential equation(s)?
    Solution

    Concept:

    • Linear Differential Equation:


    A general linear differential equation of order n, in the dependent variable y and the independent variable x, can be expressed in the following form:

    \({{\rm{a}}_0}\left( {\rm{x}} \right)\frac{{{{\rm{d}}^{\rm{n}}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}} + {{\rm{a}}_1}\left( {\rm{x}} \right)\frac{{{{\rm{d}}^{{\rm{n}} - 1}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{{\rm{n}} - 1}}}} + \ldots + {{\rm{a}}_{{\rm{n}} - 1}}\left( {\rm{x}} \right)\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{a}}_{\rm{n}}}\left( {\rm{x}} \right){\rm{y}} = {\rm{b}}\left( {\rm{x}} \right)\)

    A differential equation will be linear as long as,

    1. The dependent variables and its derivatives occur in the first degree
    2. The dependent variables and its derivatives are not multiplied together
    3. There is no transcendental function (trigonometric, logarithmic, exponential, etc. of the dependent variable

     

    • Applying this concept, it is evident that EQ 1 and EQ 3 are linear differential equations.
    • EQ 2 is not a linear differential equation because the derivative of the dependent variable \(\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)\) occurs in 2nd degree.
    • EQ 4 is not a linear differential equation because it contains transcendental function of dependent variable (if any).
  • Question 3
    1 / -0

    What is the integrating factor of the following differential equation if any?

    \(\cos {\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}\tan {\rm{x}} = {\cos ^3}{\rm{x}}\)

    Solution

    Concept:

    If a first order linear differential equation can be expressed as \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{Py}} = {\rm{Q\;}}\)where P and Q are either functions of x or constants, then integrating factor (I.F.) is given by \({{\rm{e}}^{\smallint {\rm{Pdx}}}}\) and the solution of the differential equation is given by, \({\rm{y}}{{\rm{e}}^{\smallint {\rm{Pdx}}}} = \smallint {\rm{Q}} \times {{\rm{e}}^{\smallint {\rm{Pdx}}}}{\rm{dx}} + {\rm{c}}\) where c is an integrating constant.

    Calculation:

    The given differential equation \(\cos {\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}\tan {\rm{x}} = {\cos ^3}{\rm{x}}\) can be rearranged as \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + \frac{{{\rm{y}}\tan {\rm{x}}}}{{\cos {\rm{x}}}} = {\cos ^2}{\rm{x}}\)

    \(\therefore \frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}\tan {\rm{x}}\sec {\rm{x}} = {\cos ^2}{\rm{x\;}}\)

    Hence the,

    \({{\;I}}.{\rm{F}}. = {{\rm{e}}^{\smallint \tan {\rm{x}}\sec {\rm{xdx}}}} = {{\rm{e}}^{\sec {\rm{x}}}}\)

  • Question 4
    1 / -0
    If roots of the auxiliary equation of \(\frac{{{d^2}y}}{{d{x^2}}} + a\frac{{dy}}{{dx}} + by = 0\) are real and equal, the general solution of the differential equation is
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    \(\frac{{{d^2}y}}{{d{x^2}}} + a\frac{{dy}}{{dx}} + by = 0\)

    \(\Rightarrow \left( {{D^2} + aD + b} \right)y = 0\)

    Auxiliary equation:

    D2 + aD + b = 0

    Roots of auxiliary equation are:

    \(D = \frac{{ - a \pm \sqrt {{a^2} - 4b} }}{2}\)

    Given that, roots of the auxiliary equation are real and equal.

    ⇒ D = -a/2

    The general solution of the differential equation is: \(y = \left( {{c_1} + {c_2}x} \right){e^{ - \frac{{ax}}{2}}}\)
  • Question 5
    1 / -0
    The solutions of Differential equation \(\left( {x{y^2}-{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right)dx - {x^2}y\;dy = 0\) is
    Solution

    \(\left( {{\rm{x}}{{\rm{y}}^2} - {{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right){\rm{dx}} - {{\rm{x}}^2}{\rm{y\;dy}} = 0{\rm{\;}}\)

    The above equations is in the form of

    Mdx + N dy = 0

    \(\begin{array}{l} M = x{y^2} - {{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}\;\\ \end{array}\)

    N = - x2y

    \(\frac{{\partial M}}{{\partial y}} \ne \frac{{\partial N}}{{\partial x}}\)

    Hence it is not an exact equation. So we have to reduce this equation to exact equation. For that we need to calculate integrating factor.

    \(\frac{{\frac{{\partial {\rm{M}}}}{{\partial {\rm{y}}}} - \frac{{\partial {\rm{N}}}}{{\partial {\rm{x}}}}}}{{\rm{N}}} = {\rm{\;}}\frac{{2{\rm{xy}} - \left( { - 2{\rm{xy}}} \right)}}{{ - {{\rm{x}}^2}{\rm{y}}}} = \frac{{ - 4}}{{\rm{x}}}\)

    This is the function of ‘x’ only.

    \(NowI.F. = {e^{\smallint \frac{{ - 4}}{x}dx}} = {e^{ - 4\;logx\;}} = \frac{1}{{{x^4}}}\)

    Multiplying the given equation by I.F. we can reduce in to exact equation.

    \(\begin{array}{l} \Rightarrow \frac{1}{{{x^4}}}\left( {x{y^2} - {{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right)dx -\frac{1}{x^4} {x^2}y\;dy = 0\\ \Rightarrow \left( {\frac{{{y^2}}}{{{x^3}}} - \frac{1}{{{x^4}}}{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right)dx - \frac{y}{{{x^2}}}dy = 0 \end{array}\)

    Now the solution is,

    \(\int_{y\;constant} {Mdx + \smallint \left( {{\rm{terms\;of\;N\;not\;Containing\;x}}} \right)dy = c}\)

    \(\begin{array}{l} \Rightarrow \smallint \left( {\frac{{{{\rm{y}}^2}}}{{{{\rm{x}}^3}}} - \frac{1}{{{{\rm{x}}^4}}}{\rm{\;}}{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right){\rm{dx}} = {\rm{C}}\\ \Rightarrow \frac{{ - {{\rm{y}}^2}}}{2}{{\rm{x}}^{-2}} + \frac{1}{3}\smallint {{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}{\rm{\;}}\left( { - 3{{\rm{x}}^{ - 4}}} \right){\rm{dx}} = {\rm{C}}\\ \Rightarrow \frac{{ - {{\rm{y}}^2}}}{2}{{\rm{x}}^{-2}} + \frac{1}{3}{\rm{\;}}{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}} = {\rm{C}}\\ \Rightarrow \frac{1}{3}{\rm{\;}}{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}} - \frac{{{{\rm{y}}^2}{{\rm{x}}^{-2}}}}{2} = {\rm{C\;}} \Rightarrow 2{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}} - 3{{\rm{y}}^2}{{\rm{x}}^{-2}} = {\rm{C}} \end{array}\)

  • Question 6
    1 / -0

    What is the particular integral of the differential equation: \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} - \frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 20{\rm{y}} = \sinh 5{\rm{x}}\)?

    Solution

    Concept:

    Rules for finding Particular Integral (P.I.) for exponential function:

    Particular integral of \(\left\{ {{\rm{f}}\left( {\rm{D}} \right)} \right\}{\rm{y}} = {\rm{\;}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;}}\) is calculated by,

    \(\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = \frac{1}{{{\rm{f}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;provided\;f}}\left( {\rm{a}} \right) \ne 0{\rm{\;\;}}\)

    \({\rm{If\;f}}\left( {\rm{a}} \right) = 0,{\rm{\;then\;P}}.{\rm{I}}.{\rm{\;is\;calculated\;as\;}}\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = {\rm{x}}\frac{1}{{{\rm{f'}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;\;provided\;f'}}\left( {\rm{a}} \right) \ne 0{\rm{\;\;}}\)

    \({\rm{If\;f'}}\left( {\rm{a}} \right) = 0,{\rm{\;then\;P}}.{\rm{I}}.{\rm{\;is\;calculated\;as\;}}\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = {{\rm{x}}^2}\frac{1}{{{\rm{f''}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;\;provided\;f''}}\left( {\rm{a}} \right) \ne 0{\rm{\;and\;so\;on}}.{\rm{\;\;}}\)

    Calculation:

    \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} - \frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 20{\rm{y}} = {\rm{\;\;}}\sinh 5{\rm{x}} = \frac{1}{2}\left( {{{\rm{e}}^{5{\rm{x}}}} - {{\rm{e}}^{ - 5{\rm{x}}}}} \right){\rm{\;}}\therefore {\rm{\;}}\left( {{{\rm{D}}^2} - {\rm{D}} - 20} \right){\rm{y}} = \frac{1}{2}\left( {{{\rm{e}}^{5{\rm{x}}}} - {{\rm{e}}^{ - 5{\rm{x}}}}} \right)\)

    \({\rm{Here}},{\rm{\;f}}\left( {\rm{D}} \right) = {{\rm{D}}^2} - {\rm{D}} - 20{\rm{\;}}\)

    \(\therefore {\rm{P}}.{\rm{I}}.{\rm{\;}} = \frac{1}{{{{\rm{D}}^2} - {\rm{D}} - 20}} \times \frac{1}{2}\left( {{{\rm{e}}^{5{\rm{x}}}} - {{\rm{e}}^{ - 5{\rm{x}}}}} \right) = \frac{1}{2}\left[ {\frac{1}{{{{\rm{D}}^2} - {\rm{D}} - 20}}{{\rm{e}}^{5{\rm{x}}}} - \frac{1}{{{{\rm{D}}^2} - {\rm{D}} - 20}}{{\rm{e}}^{ - 5{\rm{x}}}}} \right]\)

    Now, \({\rm{f}}\left( 5 \right) = 0{\rm{\;and\;\;f}}\left( { - 5} \right) \ne 0\) Hence, approaching with proper rule we get,

    \({\rm{P}}.{\rm{I}}. = \frac{1}{2}\left[ {{\rm{x}}\frac{1}{{2{\rm{D}} - 1}}{{\rm{e}}^{5{\rm{x}}}} - \frac{1}{{{{\left( { - 5} \right)}^2} - \left( { - 5} \right) - 20}}{{\rm{e}}^{ - 5{\rm{x}}}}} \right] = \frac{1}{2}\left[ {{\rm{x}}\frac{1}{{2 \times 5 - 1}}{{\rm{e}}^{5{\rm{x}}}} - \frac{1}{{10}}{{\rm{e}}^{ - 5{\rm{x}}}}} \right] = \frac{1}{2}\left[ {\frac{{\rm{x}}}{9}{{\rm{e}}^{5{\rm{x}}}} - \frac{1}{{10}}{{\rm{e}}^{ - 5{\rm{x}}}}} \right]\)

    Mistake Point:

    Notice the hyperbolic function \(\sinh 5{\rm{x}} = \frac{1}{2}\left( {{{\rm{e}}^{5{\rm{x}}}} - {{\rm{e}}^{ - 5{\rm{x}}}}} \right)\).

    The rules are completely different for trigonometric functions (such as \(\sin 5{\rm{x}},{\rm{\;}}\cos 5{\rm{x}})\) on hyperbolic functions (such as \(\sinh 5{\rm{x}},{\rm{\;}}\cosh 5{\rm{x}})\)

  • Question 7
    1 / -0

    The solution of differential equation

    dx – (x + y + 1) dy = 0 is
    Solution

    Given differential equation is,

    dx – (x + y + 1) dy = 0

    \(\frac{{dy}}{{dx}} = \frac{1}{{\left( {x + y + 1} \right)}}\) 

    Put (x + y + 1) = t

    \( \Rightarrow 1 + \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}}\) 

    \( \Rightarrow \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} - 1\) 

    Now, the differential equation becomes

    \(\frac{{dt}}{{dx}} - 1 = \frac{1}{t}\) 

    \(\frac{{dt}}{{dx}} = \frac{1}{t} + 1\) 

    \(\frac{{dt}}{{dx}} = \frac{{t + 1}}{t}\) 

    \( \Rightarrow dt\left( {\frac{t}{{t + 1}}} \right) = dx\) 

    \( \Rightarrow \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    \( \Rightarrow \smallint \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    t = In (t + 1) = x + C1

    (x + y + 1) – In (x + y + 2) = x + C1

    y + 1 – C1 = In (x + y + 2)

    In (x + y + 2) = y + k

    (x + y + 2) = ey - ek

    ⇒ (x + y + 2) e-y = C
  • Question 8
    1 / -0
    Solution of\(\;\frac{{{d^2}y}}{{d{x^2}}} + \frac{{2dy}}{{dx}} + 17y = 0\); y(o) = 2, y’ \(\left( {\frac{\pi }{2}} \right) = 0\)
    Solution

    Given equation is a linear differential equation.

    D2 + 2D + 17 = 0

    \({\rm{D}} = \frac{{ - 2 \pm \sqrt {4 - 4 \times 17 \times 1} }}{{2 \times 1}}\)

    D = -1 ± 4i

    y = C1e(-1 + 4i)x + C2e(-1 - 4i)x

    y = e–x[C1e4xi + C2e–4xi]

    y = e–x[C1(Cos4x + iSin4x) + C2[Cos(-4x) + iSin(-4x)]]

    y = e–x[(C1 + C2)Cos4x + (C1 + C2) iSin4x]

    Let C1 + C2 = C3

    (C1 - C2)i = C4

    y = e–x[C3Cos4x + C3Sin4x]

    For x = 0, y = 2

    2 = C3

    For x = \(\frac{\pi }{2}\), y’ = 0

    \(\frac{{dy}}{{dx}} = {{\rm{e}}^{ - x}}\left[ { - 4{{\rm{C}}_3}{\rm{Sin}}4{\rm{x}} + 4{{\rm{C}}_4}{\rm{Cos}}4{\rm{x}}} \right] + \left[ {{{\rm{C}}_3}{\rm{Cos}}4{\rm{x}} + {{\rm{C}}_4}{\rm{Sin}}4{\rm{x}}} \right]{{\rm{e}}^{ - x}}\left( { - 1} \right)\)

    \(0 = {{\rm{e}}^{ - \frac{\pi }{2}}}\left[ { - 4{{\rm{C}}_3}{\rm{Sin}}2{\rm{\pi \;}} + 4{{\rm{C}}_4}{\rm{Cos}}2{\rm{\pi }}} \right] - {{\rm{e}}^{ - \frac{\pi }{2}}}\left[ {{{\rm{C}}_3} + {{\rm{C}}_4}{\rm{Sin}}2{\rm{\pi }}} \right]\)

    \(0 = {{\rm{e}}^{ - \frac{\pi }{2}}}\left[ {4{{\rm{C}}_4}} \right] - {{\rm{e}}^{ - \frac{\pi }{2}}}\left[ {{{\rm{C}}_3}} \right]\)

    \(0 = {{\rm{e}}^{ - \frac{\pi }{2}}}\left[ {4{{\rm{C}}_4} - {{\rm{C}}_3}} \right]\)

    \(4{{\rm{C}}_4} - {{\rm{C}}_3} = 0\)

    For C3 = 2

    4C4 - 2 = 0

    \({\rm{C}}4 = \frac{2}{4} = \frac{1}{2}\)

    C3 = 2

    \({\rm{y}} = {{\rm{e}}^{ - {\rm{x}}}}\left[ {2{\rm{Cos}}4{\rm{x}} + \frac{1}{2}{\rm{Sin}}4{\rm{x}}} \right]\)

  • Question 9
    1 / -0

    Structural analysis of a theoretical beam which is subjected to an irregular loading system shows that the deflection of the beam can be best represented by the differential equation \({\rm{\;}}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + \frac{2}{{\rm{x}}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 6\frac{{\rm{y}}}{{{{\rm{x}}^2}}}{\rm{\;}} = 7{{\rm{x}}^2}\) where x is the distance from a certain origin point and y is deflection. Two constraint conditions enable deflection to be zero at x = 1 and to be 1 unit at x = -1. What will be the deflection (in unit corrected up to three decimal points) at x =2?

    Solution

    Concept:

    Cauchy-Euler Equation:

    The homogeneous linear differential equations in form of  \({{\rm{x}}^{\rm{n}}}\frac{{{{\rm{d}}^{\rm{n}}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}} + {{\rm{a}}_1}{{\rm{x}}^{{\rm{n}} - 1}}\frac{{{{\rm{d}}^{{\rm{n}} - 1}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{{\rm{n}} - 1}}}} + \ldots + {{\rm{a}}_{{\rm{n}} - 1}}{\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{a}}_{\rm{n}}}{\rm{y}} = {\rm{b}}\left( {\rm{x}} \right)\) is known as Cauchy-Euler Equation, where  are constants and b(x) is either a function of x or a constant. The solution of these equations can be easily obtained by substituting \({\rm{x}} = {{\rm{e}}^{\rm{t}}}\) and this will give the following results:

    \({\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {\rm{Dy}},{\rm{\;\;\;\;}}{{\rm{x}}^2}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right){\rm{y}},{\rm{\;\;}}{{\rm{x}}^3}\frac{{{{\rm{d}}^3}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^3}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right)\left( {{\rm{D}} - 2} \right),{\rm{\;\;}} \ldots ,{\rm{\;\;}}{{\rm{x}}^{\rm{n}}}\frac{{{{\rm{d}}^{\rm{n}}}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^{\rm{n}}}}} = {\rm{D}}\left( {{\rm{D}} - 1} \right) \ldots \left( {{\rm{D}} - \left( {{\rm{n}} - 1} \right)} \right){\rm{y}}\)

    where D =d/dt operator.

    Rules for finding Particular Integral (P.I.) for exponential function:

    Particular integral of \(\left\{ {{\rm{f}}\left( {\rm{D}} \right)} \right\}{\rm{y}} = {\rm{\;}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;}}\) is calculated by,

    \(\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = \frac{1}{{{\rm{f}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;provided\;f}}\left( {\rm{a}} \right) \ne 0{\rm{\;\;}}\)

    \({\rm{If\;f}}\left( {\rm{a}} \right) = 0,{\rm{\;then\;P}}.{\rm{I}}.{\rm{\;is\;calculated\;as\;}}\frac{1}{{{\rm{f}}\left( {\rm{D}} \right)}}{{\rm{e}}^{{\rm{ax}}}} = {\rm{x}}\frac{1}{{{\rm{f'}}\left( {\rm{a}} \right)}}{{\rm{e}}^{{\rm{ax}}}}{\rm{\;\;\;provided\;f'}}\left( {\rm{a}} \right) \ne 0{\rm{\;and\;so\;on}}.{\rm{\;\;}}\)

    Calculation:

    The given equation can be rearranged as, \({{\rm{x}}^2}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + 2{\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 6{\rm{y\;}} = 7{{\rm{x}}^4}\). So, it is in the form of Cauchy-Euler Equation. So, by substituting \({\rm{x}} = {{\rm{e}}^{\rm{t}}}\) we get,

    \(\left[ {{\rm{D}}\left( {{\rm{D}} - 1} \right) + 2{\rm{D}} - 6} \right]{\rm{y}} = 7{{\rm{e}}^{4{\rm{t}}}}{\rm{\;}} \Rightarrow \left( {{{\rm{D}}^2} + {\rm{D}} - 6} \right){\rm{y}} = 7{{\rm{e}}^{4{\rm{t}}}}{\rm{\;\;where\;D}} = \frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{operator}}\)

    So, the auxiliary equation is, \({{\rm{D}}^2} + {\rm{D}} - 6 = 0 \Rightarrow {\rm{D}} = - 3,{\rm{\;}}2\)

    \(\therefore {\rm{\;The\;Complementary\;function}}\left( {{\rm{C}}.{\rm{F}}.} \right) = {\rm{\;A}}{{\rm{e}}^{2{\rm{t}}}} + {\rm{B}}{{\rm{e}}^{ - 3{\rm{t}}}}\)

    \(\therefore {\rm{\;The\;Particular\;integral\;}}\left( {{\rm{P}}.{\rm{I}}.} \right) = \frac{1}{{{{\rm{D}}^2} + {\rm{D}} - 6}}7{{\rm{e}}^{4{\rm{t}}}} = 7 \times \frac{1}{{{4^2} + 4 - 6}}{{\rm{e}}^{4{\rm{t}}}} = \frac{{{{\rm{e}}^{4{\rm{t}}}}}}{2}\)

    \(\therefore {\rm{\;The\;total\;solution}},{\rm{y}} = {\rm{C}}.{\rm{F}}.{\rm{\;}} + {\rm{P}}.{\rm{I}}.{\rm{\;}} = {\rm{\;A}}{{\rm{e}}^{2{\rm{t}}}} + {\rm{B}}{{\rm{e}}^{ - 3{\rm{t}}}} + \frac{{{{\rm{e}}^{4{\rm{t}}}}}}{2}{\rm{\;}} \Rightarrow {\rm{y}} = {\rm{A}}{{\rm{x}}^2} + \frac{{\rm{B}}}{{{{\rm{x}}^3}}} + \frac{1}{2}{{\rm{x}}^4}\)

    \({\rm{Given}},{\rm{\;y\;}} = {\rm{\;}}0{\rm{\;\;at\;x\;}} = {\rm{\;}}1{\rm{\;}}\therefore 0 = {\rm{A}} \times {1^2} + \frac{{\rm{B}}}{{{\rm{\;}}{1^3}}} + \frac{1}{2} \Rightarrow {\rm{A}} + {\rm{B}} = {\rm{\;}} - 0.5\)

    \({\rm{Given}},{\rm{\;y\;}} = {\rm{\;}}1{\rm{\;\;at\;x\;}} = {\rm{\;}} - 1{\rm{\;}}\therefore 1 = {\rm{A}} \times {\left( { - 1} \right)^2} + \frac{{\rm{B}}}{{{{\left( { - {\rm{\;}}1} \right)}^3}}} + \frac{1}{2} \times 1 \Rightarrow {\rm{A}} - {\rm{B}} = {\rm{\;}}0.5{\rm{\;\;\;\;}}\therefore {\rm{A}} = 0{\rm{\;}}\& \;\;B = - 0.5\)  

    \(\therefore {\rm{y}}\left( {\rm{x}} \right) = \frac{1}{2}\left( {{{\rm{x}}^4} - \frac{1}{{{{\rm{x}}^3}}}} \right){\rm{\;\;\;}}\therefore {\rm{\;y}}\left( 2 \right) = \frac{1}{2}\left( {{2^4} - \frac{1}{{{2^3}}}} \right) = 7.9375\)

  • Question 10
    1 / -0

     

    Consider the differential equation: \({\sec ^2}{\rm{y}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{x}}^2}\tan {\rm{y}} = {{\rm{x}}^2}\). If \({\rm{y}}\left( 0 \right) = 2.5\) then what will the value (corrected up to three decimal points) of \({\rm{y}}\left( 1 \right)\)?
    Solution

    Concept:

    The most convenient way to solve a first-order linear differential equation is by implementing the “integrating factor approach”. To apply the “integrating factor approach”, the equation must be expressed as \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{Py}} = {\rm{Q\;}}\), where P and Q are either function of x or constants. Then the integrating factor (I.F.) can be given by \({{\rm{e}}^{\smallint {\rm{Pdx}}}}\) and the solution of the differential equation is given by, \({\rm{y}}{{\rm{e}}^{\smallint {\rm{Pdx}}}} = \smallint {\rm{Q}} \times {{\rm{e}}^{\smallint {\rm{Pdx}}}}{\rm{dx}} + {\rm{c}}\) where c is an integrating constant.

    If a linear first-order differential equation is not given in form of \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{Py}} = {\rm{Q}}\), then if possible, it’s better to bring it to that form either by substituting or rearranging.

    Calculation:

    Given the differential equation, \({\sec ^2}{\rm{y}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{x}}^2}\tan {\rm{y}} = {{\rm{x}}^2}\) which is not in the \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{Py}} = {\rm{Q}}\) form.

    Put, \(\tan {\rm{y}} = {\rm{t\;\;\;}}\therefore {\rm{\;}}\frac{{{\rm{dt}}}}{{{\rm{dx}}}} = {\sec ^2}{\rm{y}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\)

    Hence the equation reduces to, \(\frac{{{\rm{dt}}}}{{{\rm{dx}}}} + {{\rm{x}}^2}{\rm{t}} = {{\rm{x}}^2}\) which is now in the \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{Py}} = {\rm{Q}}\) form.

    \(\therefore {\rm{\;I}}.{\rm{F}}. = {{\rm{e}}^{\smallint {{\rm{x}}^2}{\rm{dx}}}} = {{\rm{e}}^{\frac{{{{\rm{x}}^3}}}{3}}}\)

    Hence, the solution is \(,{\rm{\;\;t}} \times {{\rm{e}}^{\frac{{{{\rm{x}}^3}}}{3}}} = \smallint {{\rm{x}}^2} \times {{\rm{e}}^{\frac{{{{\rm{x}}^3}}}{3}}}{\rm{dx}} + {\rm{c}} = \smallint {{\rm{e}}^{\frac{{{{\rm{x}}^3}}}{3}}}{\rm{d}}\left( {\frac{{{{\rm{x}}^3}}}{3}} \right) + {\rm{c}} = {{\rm{e}}^{\frac{{{{\rm{x}}^3}}}{3}}} + {\rm{c}}\)

    \(\therefore {\rm{t}} = 1 + {\rm{c}}{{\rm{e}}^{ - \frac{{{{\rm{x}}^3}}}{3}}}\)  Hence, by replacing t we get, \(\tan {\rm{y}} = {\rm{\;}}1 + {\rm{c}}{{\rm{e}}^{ - \frac{{{{\rm{x}}^3}}}{3}}}{\rm{\;}}\)

    Given, \({\rm{y}}\left( 0 \right) = 2.5{\rm{\;\;\;\;\;}}\therefore \tan 2.5 = {\rm{\;}}1 + {\rm{c}}{{\rm{e}}^{ - {\rm{\;}}\frac{{{0^3}}}{3}}}{\rm{\;}} \Rightarrow {\rm{c}} = {\rm{\;}} - 1.747{\rm{\;\;}}\)

    The final form of the solution is, \(\tan {\rm{y}} = {\rm{\;}}1 - 1.747{{\rm{e}}^{ - {\rm{\;}}\frac{{{{\rm{x}}^3}}}{3}}}\)

    \(\therefore {\rm{at\;x}} = 1,{\rm{\;}}\tan {\rm{y}} = {\rm{\;}}1 - 1.747{{\rm{e}}^{ - {\rm{\;}}\frac{{{1^3}}}{3}}} = - 0.2518{\rm{\;\;}} \Rightarrow {\rm{y}} = - 0.2466\)

    Mistake Point:

    Make sure to change the argument of trigonometric function into the “radian” of “degree” in the calculator. In general, by default, the argument of a trigonometric function is set to “degree” in online Calculator. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now