Concept:
Solution of Heat Equation:
The general form of the one-dimensional heat equation is \(\frac{{\partial {\rm{u}}}}{{\partial {\rm{t}}}} = {{\rm{\beta }}^2}\frac{{{\partial ^2}{\rm{u}}}}{{\partial {{\rm{x}}^2}}}\) and this equation can be solved by applying method separation. The closed form of the solution is given by,
\({\rm{u}}\left( {{\rm{x}},{\rm{t}}} \right) = {\rm{\;}}\left( {{\rm{Acospx}} + {\rm{Bsinpx}}} \right){{\rm{e}}^{ - {{\rm{\beta }}^2}{{\rm{p}}^2}{\rm{t}}}}\) where A and B are constants and \( - {{\rm{p}}^2}\) is the separation constant.
By using boundary conditions and initial conditions values of A, B and p can be calculated.
Calculation:
Given PDE can be rearranged as, \(\frac{{\partial {\rm{h}}}}{{\partial {\rm{t}}}} = {\left( {\frac{1}{{1.6}}} \right)^2}\frac{{{\partial ^2}{\rm{h}}}}{{\partial {{\rm{x}}^2}}}\)
Hence, the solution can be written as, \({\rm{h}}\left( {{\rm{x}},{\rm{t}}} \right) = {\rm{\;}}\left( {{\rm{Acospx}} + {\rm{Bsinpx}}} \right){{\rm{e}}^{ - {{\left( {\frac{1}{{1.6}}} \right)}^2}{{\rm{p}}^2}{\rm{t}}}}\)
Now, the boundary condition is given as \({\rm{h}}\left( {0,{\rm{t}}} \right) = {\rm{\;}}0{\rm{\;\;}}\therefore {\rm{A}} = 0\therefore {\rm{h}}\left( {{\rm{x}},{\rm{t}}} \right) = {\rm{\;}}\left( {{\rm{Bsinpx}}} \right){{\rm{e}}^{ - {{\left( {\frac{1}{{1.6}}} \right)}^2}{{\rm{p}}^2}{\rm{t}}}}\)
And, \({\rm{h}}\left( {2,{\rm{t}}} \right) = {\rm{\;}}0{\rm{\;\;}}\therefore {\rm{sin}}2{\rm{p}} = 0{\rm{\;}} \Rightarrow {\rm{p}} = \frac{{{\rm{n\pi }}}}{2}{\rm{\;\;\;\;\;}}\therefore {\rm{h}}\left( {{\rm{x}},{\rm{t}}} \right) = {\rm{\;}}\left( {{\rm{Bsin}}\frac{{{\rm{n\pi }}}}{2}{\rm{x}}} \right){{\rm{e}}^{ - {{\left( {\frac{1}{{1.6}}} \right)}^2}{{\left( {\frac{{{\rm{n\pi }}}}{2}} \right)}^2}{\rm{t}}}}\)
Now ignoring the general form of the solution, and applying the initial condition given as \({\rm{h}}\left( {{\rm{x}},0} \right) = {\rm{sin}}3.2{\rm{x}}\)
\(\therefore {\rm{Bsin}}\frac{{{\rm{n\pi }}}}{2}{\rm{x}} = {\rm{sin}}3.2{\rm{x\;\;\;}}\therefore {\rm{Comapring\;both\;sides}},{\rm{\;B}} = 1{\rm{\;and\;\;}}\frac{{{\rm{n\pi }}}}{2} = 3.2\)
So, the final form of the solution is, \({\rm{h}}\left( {{\rm{x}},{\rm{t}}} \right) = {\rm{\;}}\left( {{\rm{sin}}3.2{\rm{x}}} \right){{\rm{e}}^{ - {{\left( {\frac{1}{{1.6}}} \right)}^2}{{\left( {3.2} \right)}^2}{\rm{t}}}} = {{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x}}\)
Tips and Tricks:
The solution of 2D wave equations, heat equations and Laplace equations are lengthy. If possible, it’s always recommended to go by verifying options. Consider the fourth option.
\({\rm{h}}\left( {{\rm{x}},{\rm{t}}} \right) = {{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x\;}}\therefore {\rm{\;}}\frac{{\partial {\rm{h}}}}{{\partial {\rm{t}}}} = - 4{{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x\;\;and\;}}\frac{{\partial {\rm{h}}}}{{\partial {\rm{x}}}} = 3.2{{\rm{e}}^{ - 4{\rm{t}}}}{\rm{cos}}3.2{\rm{x\;}} \Rightarrow {\rm{\;}}\frac{{{\partial ^2}{\rm{h}}}}{{\partial {{\rm{x}}^2}}} = {3.2^2}{{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x\;\;}}\)
\(\Rightarrow {\rm{\;}}\frac{{{\partial ^2}{\rm{h}}}}{{\partial {{\rm{x}}^2}}} = 10.24 \times {{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x\;}} = 2.56 \times 4{{\rm{e}}^{ - 4{\rm{t}}}}{\rm{sin}}3.2{\rm{x}} = 2.56\frac{{\partial {\rm{h}}}}{{\partial {\rm{t}}}}{\rm{\;\;}}\therefore \frac{{{\partial ^2}{\rm{h}}}}{{\partial {{\rm{x}}^2}}} = 2.56\frac{{\partial {\rm{h}}}}{{\partial {\rm{t}}}}\left( {{\rm{checked\;as\;given}}} \right)\)