Self Studies

Structural Analysis Test 3

Result Self Studies

Structural Analysis Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A two-hinged semi-circular arch of radius 12 m is subjected to rise of temperature of 50°C due to which horizontal thrust developed will be “H”. How much rise of temperature is allowed to the above arch such that the horizontal thrust developed will get reduced to 50% if radius of arch is reduced to 9 m now.
    Solution

    Concept:

    Horizontal thrust due to rise of temperature is given by:

    \({\rm{H}} = \frac{{4{\rm{EI\alpha T}}}}{{{\rm{\pi \;}}{{\rm{R}}^2}}}\)

    E = Modulus of Elasticity of the material

    I = Moment of Inertia of the arch section

    α = Coefficient of thermal expansion

    T = Rise in temperature

    R = Radius of the arch

    Calculation:

    As, E, I, α, π remains same

    \({\rm{H}} \propto \frac{{\rm{T}}}{{{{\rm{R}}^2}}}\)

    \({{\rm{H}}_1} = \frac{{{{\rm{T}}_1}}}{{{\rm{R}}_1^2}}\)                                …(i)

    \({{\rm{H}}_2} = \frac{{{{\rm{T}}_2}}}{{{\rm{R}}_2^2}}\)                                …(ii)

    R1 = 12 m

    H2 = 0.50 H1

    R2 = 9 m

    From (i) and (ii)

    \(\frac{{{{\rm{H}}_1}}}{{{{\rm{H}}_2}}} = \frac{{{{\rm{T}}_1}{\rm{R}}_2^2}}{{{{\rm{T}}_2}{\rm{R}}_1^2}}\)

    \(\frac{{{{\rm{H}}_1}}}{{0.50{\rm{\;}}{{\rm{H}}_1}}} = \frac{{50 \times {9^2}}}{{{{\rm{T}}_2} \times {{12}^2}}}\)

    T2 = 14.06°
  • Question 2
    1 / -0
    The flexibility matrix of a Beam element is given as \(\frac{L}{{4EI}}\left[ {\begin{array}{*{20}{c}} { - 1}&2\\ { - 2}&1 \end{array}} \right]\). Then the stiffness matrix is
    Solution

    k → stiffness matrix

    f → flexibility matrix

    k = [f]–1

    [f] = \(\frac{L}{{4EI}}\left[ {\begin{array}{*{20}{c}} { - 1}&2\\ { - 2}&1 \end{array}} \right]\)

    [f] = \(\left[ {\begin{array}{*{20}{c}} {\frac{{ - L}}{{4EI}}}&{\frac{L}{{2EI}}}\\ {\frac{{ - L}}{{2EI}}}&{\frac{L}{{4EI}}} \end{array}} \right]\)

    [f]–1\(\frac{{adj\left[ f \right]}}{{\left| f \right|}}\)

    |f| = \(\frac{{ - {L^2}}}{{16{{\left( {EI} \right)}^2}}} + \frac{{{L^2}}}{{4{{\left( {EI} \right)}^2}}}\)

    |f| = \(\frac{{3{L^2}}}{{16{{\left( {EI} \right)}^2}}}\)

    adj[f] = \(\left[ {\begin{array}{*{20}{c}} {\frac{L}{{4EI}}}&{\frac{{ - L}}{{2EI}}}\\ {\frac{L}{{2EI}}}&{\frac{{ - L}}{{4EI}}} \end{array}} \right]\)

    [f]–1\(\frac{{16{E^2}{I^2}}}{{3{L^2}}}\left[ {\begin{array}{*{20}{c}} {\frac{{ L}}{{4EI}}}&{\frac{-L}{{2EI}}}\\ {\frac{{ L}}{{2EI}}}&{\frac{-L}{{4EI}}} \end{array}} \right]\)

    [f]–1\(\left[ {\begin{array}{*{20}{c}} {\frac{{ 4EI}}{{3L}}}&{\frac{{-8EI}}{{3L}}}\\ {\frac{{ 8EI}}{{3L}}}&{\frac{{-4EI}}{{3L}}} \end{array}} \right]\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now