Concept –
For finding the expression of Next state, a truth table needs to be constructed.
| Current State | Next State |
X | Y | Q | Qn+1 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
2 | 0 | 1 | 0 | 1 |
3 | 0 | 1 | 1 | 0 |
4 | 1 | 0 | 0 | 0 |
5 | 1 | 0 | 1 | 1 |
6 | 1 | 1 | 0 | 0 |
7 | 1 | 1 | 1 | 0 |
Equation for Qn+1 is made by writing all values of X, Y, Q for which Qn+1 = 1
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\rm{\;\bar X\;\bar Y\;\bar Q}} + {\rm{\;\;\bar X\;\bar YQ}} + {\rm{\;\bar X\;Y\;\bar Q}} + {\rm{\;X\;\bar YQ}}\)
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\rm{\;\bar X\;\bar Y\;}}\left( {{\rm{\bar Q}} + {\rm{Q}}} \right) + {\rm{\;\bar X\;Y\;\bar Q}} + {\rm{\;X\;\bar YQ}}\)
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = \;{\bf{\bar X}}{\rm{\;}}{\bf{\bar Y}}{\rm{\;}} + {\rm{\bar XY\bar Q}} + {\rm{\;}}{\bf{X}}{\rm{\;}}{\bf{\bar YQ}}\)
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\rm{\;\bar Y}}\left( {{\rm{\bar X}} + {\rm{XQ\;}}} \right) + {\rm{\bar XY\bar Q}}\)
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\bf{\bar Y}}\;{\bf{\bar X}} + {\rm{\bar YQ}} + {\bf{\bar XY\bar Q}}\)
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\rm{\bar X}}.{\rm{\bar Y}} + {\rm{\bar X}}\overline {.{\rm{Q}}} + {\rm{\bar YQ}}\)
Consensus theorem: ab + a̅c + ac = ab + a̅c
In a = Q̅, b = Y̅, c = Z̅
\({{\rm{Q}}_{{\rm{n}} + 1}}{\rm{\;}} = {\rm{\bar X\bar Q}} + {\rm{\bar YQ\;\;\;\;}}\)
Qn+1 = (X̅ ∧ Q̅) ∨ (Y̅ ∧ Q)
Important Point:
. → AND → ∧
+ → OR → ∨ )
Minimization could have been done using K - Map