Self Studies

Electric Circuits Test 1

Result Self Studies

Electric Circuits Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    A 5 μF condenser is connected in series with a coil having inductance of 50 mH. If a 50 V source operating at resonance frequency causes a circuit current of 10 mA. What is the Q factor of the coil.(upto 2 decimals)

    Solution

    Given that

    L = 50 × 10-3 H

    C = 5 × 10-6 F

    Resonant frequency, \({\omega _0} = \frac{1}{{\sqrt {LC} }}\)

    \({\omega _0} = \frac{1}{{\sqrt {50 \times {{10}^{ - 3}} \times 5 \times {{10}^{ - 6}}} }} = 2000rad/sec\;\;\)

    Given that, current = 10 mA

    At resonance, \({I_0} = \frac{V}{R}\)

    \(\Rightarrow 10 \times {10^{ - 3}} = \frac{{50}}{R}\)

    ⇒ R = 5 KΩ

    Quality factor, \(Q = \frac{{{\omega _0}L}}{R} = \frac{{2000 \times 50 \times {{10}^{ - 3}}}}{{5 \times {{10}^3}}} = 0.02\)

  • Question 2
    2 / -0.33

    In a RC type low pass fitter, the cut-off frequency is 1500 Hz, Assuming the capacitance to be 500 nF. The value of the resistance is – (in Ω)

    Solution

    we know that,

    Cut – off frequency \({f_c} = \frac{1}{{2\pi RC}}\)

    \(\begin{array}{l} \Rightarrow R = \frac{1}{{2\pi {f_c}C}}\\ \Rightarrow R = \frac{1}{{2\pi {f_c}C}}\\ \Rightarrow R = \frac{1}{{2\pi \times 1500 \times 500 \times {{10}^{ - 9}}}} \end{array}\)

    ⇒ R = 212.2 Ω

  • Question 3
    2 / -0.33
    At a particular instant, the R-phase voltage of a balanced 3-phase system is +60 V, and y phase voltage is -120 V. The voltage of B phase at that instant is ______ (in V)
    Solution

    Given 3-phase system is balanced, let the instantaneous voltage is

    VR (t) = Vm cosωt

    VY (t) = Vm cos(ωt - 120°)

    VB (t) = Vm cos(ωt + 120°)

    Vm cosωt = 60 V

    Vm cos(ωt - 120°) = -120 V

    ⇒ Vm [cosωt cos120 + sinωt sin120] = -120

    \(\begin{array}{l} \Rightarrow {V_m}\left[ {{\rm{cos\omega t}}\left( { - \frac{1}{2}} \right) + sin\omega t\left( {\frac{{\sqrt 3 }}{2}} \right)} \right] = - 120\\ \Rightarrow 60\left( { - \frac{1}{2}} \right) + \frac{{\sqrt 3 }}{2}{V_m}sin\omega t = - 120\\ \Rightarrow 60\left( { - \frac{1}{2}} \right) + \frac{{\sqrt 3 }}{2}{V_m}sin\omega t = - 120 \Rightarrow 60\left( { - \frac{1}{2}} \right) + \frac{{\sqrt 3 }}{2}{V_m}sin\omega t = - 120\end{array}\)  

    Vm cosωt = 60 V

    ⇒ tanωt = - √3 ⇒ ωt = -60°

    \(\begin{array}{l}V_m^2{\sin ^2}\omega t + V_m^2{\cos ^2}\omega t = {\left( {60\sqrt 3 } \right)^2} + {\left( {60} \right)^2} \Rightarrow {V_m} = 120\;V\\{V_B} = {V_m}\cos \left( {\omega t + 120} \right) = 120\cos \left( { - 60 + 120} \right) = 120 \times \frac{1}{2} = 60\;V\end{array}\) 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now