Self Studies

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    Let \(M = \left[ {\begin{array}{*{20}{c}} 9&2&7&1\\ 0&7&2&1\\ 0&0&{11}&6\\ 0&0&{ - 5}&0 \end{array}} \right]\). Then, the value of det((8I – M)3) is
    Solution

    Concept:

    det (AB) = det (A) × det (B)

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigenvalues or latent roots or characteristic roots of matrix A.

    Properties of Eigenvalues:

    The sum of Eigenvalues of a matrix A is equal to the trace of that matrix A

    The product of Eigenvalues of a matrix A is equal to the determinant of that matrix A

    Calculation:

    \(M = \left[ {\begin{array}{*{20}{c}} 9&2&7&1\\ 0&7&2&1\\ 0&0&{11}&6\\ 0&0&{ - 5}&0 \end{array}} \right]\)

    Characteristic equation: |M – λI| = 0

    \( \Rightarrow \left| {\begin{array}{*{20}{c}} {9 - \lambda }&2&7&1\\ 0&{7 - \lambda }&2&1\\ 0&0&{11 - \lambda }&6\\ 0&0&{ - 5}&\lambda \end{array}} \right| = 0\)

    ⇒ (9 – λ) (7 – λ) (11λ – λ2 + 30) = 0

    ⇒ λ = 5, 6, 7, 9

    Eigen values of matrix M = 5, 6, 7, 9

    Eigen values of (8I – M) = 3, 2, 1, -1

    Determinant of (8I – M) = -6

    det((8I – M)3) = -216

  • Question 2
    2 / -0.33
    If the directional derivative of the function z = y2e2x at (2, -1) along the unit vector \(\vec b = \alpha \hat i + \beta \hat j\) is zero, then |α + β| equals
    Solution

    Concept:

    Directional derivative of a function f along the vector \(\hat u \) is given by:

    \(DD = \nabla f.\frac{{\vec u}}{{\left| u \right|}}\)

    where \(\frac{{\vec u}}{{\left| u \right|}}={\hat{u}}\)

    grad f or ∇ f is defined by the equation,

    \(grad\;f = \nabla f = i\frac{{\partial f}}{{\partial x}} + j\frac{{\partial f}}{{\partial y}} + k\frac{{\partial f}}{{\partial z}}\)

    Calculation:

    z = y2e2x

    \(gradz = \nabla z = 2{y^2}{e^{2x}}\hat i + 2y{e^{2x}}\hat j\)

    At (2, -1), \(\nabla z = 2{e^4}\hat i - 2{e^4}\hat j\)

    Unit vector \(\vec b = \alpha \hat i + \beta \hat j\)

    Directional derivative \( = \nabla z.\vec b = \left( {2{e^4}\hat i - 2{e^4}\hat j} \right).\alpha \hat i + \beta \hat j\)

    = 2e4α – 2e4β

    Given that, the directional derivative is zero.

    ⇒ 2e4α – 2e4β = 0

    ⇒ α = β

    As b is a unit vector, \(\sqrt {{\alpha ^2} + {\beta ^2}} = 1\)

    \( \Rightarrow \alpha = \beta = \frac{1}{{\sqrt 2 }}\)

    \(\left| {\alpha + \beta } \right| = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = \sqrt 2 \)

  • Question 3
    2 / -0.33
     If a function y(x) is described by the initial value problem, \(\frac{{{d^2}y}}{{d{x^2}}} + 5\frac{{dy}}{{dx}} + 6y = 0\), with initial conditions y(0) = 2, and \({\left( {\frac{{dy}}{{dx}}} \right)_{x = 0}} = 0,\) then the value of y at x = 1 is ________. (Round off to 2 decimal places)
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    The given differential equation is, \(\frac{{{d^2}y}}{{d{x^2}}} + 5\frac{{dy}}{{dx}} + 6y = 0\)

    D2 + 5D + 6 = 0

    Auxiliary equation: m2 + 5m + 6

    ⇒ m = -2, -3

    The solution is, y = C1 e-2x + C2 e-3x

    y(0) = 2

    ⇒ C1 + C2 = 2

    \(\frac{{dy}}{{dx}} = - 2{C_1}{e^{ - 2x}} - 3{C_2}{e^{ - 3x}}\)

    \({\left( {\frac{{dy}}{{dx}}} \right)_{x = 0}} = 0\)

    ⇒ -2C1 – 3C2 = 0

    By solving the above two equations, C1 = 6 and C2 = -4

    Now, the solution is, y(x) = 6 e-2x – 4 e-3x

    At x = 1, \(y = \frac{6}{{{e^2}}} - \frac{4}{{{e^3}}} = 0.61\)

  • Question 4
    2 / -0.33
    Let X be a random variable having Poisson (2) distribution. Then \(E\left( {\frac{1}{{1 + x}}} \right)\) equals
    Solution

    Concept:

    The probability density function of Poisson’s distribution is

    \(p\left( x \right)=\frac{{{e}^{-\lambda }}\cdot {{\lambda }^{x}}}{x!}\)

    Where

    λ = mean = np

    n = number of total outcomes

    p = probability of success

    Note: This distribution uses where the probability of success i.e. p is very small.

    Calculation:

    Poisson (2) represents that the distribution is Poisson with λ = 2.

    Now, the distribution function \(= \frac{{{e^{ - 2}}{2^x}}}{{x!}}\)

    \(E\left( {\frac{1}{{1 + x}}} \right) = \mathop \sum \limits_{x = 0}^\infty \frac{1}{{1 + x}}\left( {\frac{{{e^{ - 2}}{2^x}}}{{x!}}} \right)\)

    \(= \mathop \sum \limits_{x = 0}^\infty \frac{{{e^{ - 2}}{2^x}}}{{\left( {x + 1} \right)!}}\)

    \(= \frac{{{e^{ - 2}}}}{2}\mathop \sum \limits_{x = 0}^\infty \frac{{{2^{\left( {x + 1} \right)}}}}{{\left( {x + 1} \right)!}}\)

    \(= \frac{{{e^{ - 2}}}}{2}\left( {\frac{2}{{1!}} + \frac{{{2^2}}}{{2!}} + \frac{{{2^3}}}{{3!}} + \ldots } \right)\)

    \( = \frac{{{e^{ - 2}}}}{2}\left( {{e^2} - 1} \right)\)

    \(= \frac{1}{2}\left( {1 - {e^{ - 2}}} \right)\)

  • Question 5
    2 / -0.33
    Let E and F be two events. Then which one of the following statements is NOT always TRUE?
    Solution

    1 – P(Ec) – P(Fc) = P(E) + P(F) – 1

    = P(E) + P(F) – P (E ⋂ F) + P (E ⋂ F) – 1

    = P (E U F) + P (E ⋂ F) – 1

    Now, consider the option 1,

    P (E ⋂ F) ≤ 1 – P(Ec) – P(Fc)

    ⇒ P (E ⋂ F) ≤ P (E U F) + P (E ⋂ F) – 1

    ⇒ P (E U F) ≥ 1

    P (E U F) can not be greater than 1 and hence option 1 is not always true.

  • Question 6
    2 / -0.33
    A packet contains 10 distinguishable firecrackers out of which 4 are defective. If three firecrackers are drawn at random (without replacement) from the packet, then the probability that all three firecrackers are defective equals
    Solution

    Number of distinguishable firecrackers = 10

    Defective firecrackers = 4

    Given that three firecrackers are drawn at random (without replacement) from the packet.

    The probability that the first firecracker is defective = 4/10

    The probability that the second firecracker is defective = 3/9

    The probability that the third firecracker is defective = 2/8

    Now, the probability that all three firecrackers are defective \(= \frac{4}{{10}} \times \frac{3}{9} \times \frac{2}{8} = \frac{1}{{30}}\)

  • Question 7
    2 / -0.33

    Let X be a random variable having U(0, 10) distribution and Y = X – [X], where [X] denotes the greatest integer less than or equal to X. Then P(Y > 0.25) equals ______

    Solution

    The given distribution is uniform distribution i.e. the variable uniformly distributed between 0 to 10.

    Y = X – [X]

    For X = U (0, 1), Y > 0.25 when 1 > X > 0.25

    For X = U (1, 2), Y > 0.25 when 2 > X > 1.25

    Similarly, Y > 0.25 for 75% of area.

    Hence the required probability = 0.75

  • Question 8
    2 / -0.33
    The line integral of the vector function \(u\left( {x,y} \right) = 2y\hat i + x\hat j\) along the straight line from (0, 0) to (2, 4) is ________
    Solution

    Straight line from (0, 0) to (2, 4)

    \(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 0}}{{4 - 0}} = t\)

    ⇒ x = 2t, y = 4t

    ⇒ dx = 2dt, dy = 4dt

    The limits of t are: 0 to 1

    Now, the line integral is \(\mathop \smallint \limits_0^1 \left[ {2\left( {4t} \right)\hat i + \left( {2t} \right)\hat j} \right].\left( {\hat idx + \hat jdy} \right)\)

    \(= \mathop \smallint \limits_0^1 8tdx + 2tdy\)

    \(= \mathop \smallint \limits_0^1 16tdt + 8tdt\)

    \(= \mathop \smallint \limits_0^1 24tdt = 12\)

  • Question 9
    2 / -0.33
    The value(s) of the integral \(\mathop \smallint \limits_{ - \pi }^\pi \left| x \right|\cos nxdx,\;n \ge 1\) is (are)
    Solution

    \(\mathop \smallint \limits_{ - \pi }^\pi \left| x \right|\cos nxdx\)

    The given function f(x) = |x| cos nx is even function. So, the given integral can be reduced to

    \( = 2\mathop \smallint \limits_0^\pi \left| x \right|\cos nxdx\)

    \( = 2\mathop \smallint \limits_0^\pi x\cos nxdx\)

    \(\smallint x\cos nxdx = x\smallint \cos nxdx - \smallint \frac{{\sin nx}}{n}dx\)

    \( = x\left( {\frac{{\sin nx}}{n}} \right) + \frac{1}{{{n^2}}}\left( {\cos nx} \right)\)

    \( = 2\left[ {\frac{{x\sin nx}}{n} + \frac{{\cos nx}}{{{n^2}}}} \right]_0^\pi \)

    \( = 2\left[ {\frac{{\cos n\pi - 1}}{{{n^2}}}} \right]\)

    \( = \frac{{ - 2}}{{{n^2}}}\left( {1 - {{\left( { - 1} \right)}^n}} \right)\)

    = 0 when n is even

    \( = - \frac{4}{{{n^2}}}\) when n is odd

  • Question 10
    2 / -0.33
    For real constants a and b, let \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\) be an orthogonal matrix. Then which of the following statements is/are always TRUE?
    Solution

    Concept:

    A square matrix ‘A’ is said to be orthogonal if it follows the following condition.

    AAT = ATA = I

    Calculation:

    \(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\)

    \({M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right]\)

    \(M{M^T} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ a&b \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&a\\ {\frac{1}{{\sqrt 2 }}}&b \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right]\)

    For orthogonal matrix, MMT = I

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}\\ {\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }}}&{{a^2} + {b^2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

    By comparing both the sides, we get

    \(\frac{a}{{\sqrt 2 }} + \frac{b}{{\sqrt 2 }} = 0 \Rightarrow a + b = 0\)

    a2 + b2 = 1

    \(\Rightarrow b = \pm \sqrt {1 - {a^2}}\)

    Therefore, \(b = \sqrt {1 - {a^2}}\) is not always true.

    ⇒ (a + b)2 – 2ab = 1

    \(\Rightarrow ab = - \frac{1}{2}\)

    By using the relation, a + b = 0 i.e. b = -a, we get

    \( \Rightarrow a\left( { - a} \right) = - \frac{1}{2} \Rightarrow a = \pm \frac{1}{{\sqrt 2 }}\)

    For \(a = \frac{1}{{\sqrt 2 }},b = - \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{1}{{\sqrt 2 }}}&{\frac{{ - 1}}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {I_2}\)

    For \(a = \frac{{ - 1}}{{\sqrt 2 }},b = \frac{1}{{\sqrt 2 }}\)\(M = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \({M^2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\ {\frac{{ - 1}}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}} \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right] \ne {I_2}\)

    Therefore, M2 = I2 is not always true.

  • Question 11
    2 / -0.33
    Evaluate \(\underset{c}{\overset{{}}{\mathop \oint }}\,\frac{{{e}^{2z}}}{{{\left( z+1 \right)}^{4}}}dz\) where C is circle |z| = 3
    Solution

    Concept:

    Cauchy Integral formula

    \({{f}^{n}}\left( a \right)=\frac{n!}{2\pi i}\underset{c}{\overset{{}}{\mathop \oint }}\,\frac{f\left( z \right)}{{{\left( z-a \right)}^{n+1}}}dz\)

    Comparing we get

    f(z) = e2z

    a = -1

    n = 3

    Calculations:

    n = 3

    f'''(z) = 8e2z

    f'''(z = -1) = 8e-2

    The given integral can be written as

    \(8{{e}^{-2}}=\frac{3!}{2\pi i}\oint \frac{{{e}^{2z}}}{{{\left( z+1 \right)}^{4}}}dz\)

    \(\Rightarrow \oint \frac{{{e}^{2z}}}{{{\left( z+1 \right)}^{4}}}dz=\frac{8\pi i{{e}^{-2}}}{3}\)
  • Question 12
    2 / -0.33
    Let f(x, y) = ex sin y, x = t3 + 1 and y = t4 + t. Then \(\frac{{df}}{{dt}}\) at t = 0 is _______. (rounded off to two decimal places)
    Solution

    Concept:

    If W = f(x, y, z) is a continuous function of n variables x, y, z, …, with continuous partial derivatives ∂W/∂x, ∂W/∂y, ∂W/∂z, … and if x, y, z, … are differentiable functions x = x(t), y = y(t), z = z(t), etc. of a variable t, then the total derivative of w with respect to t is given by

    \(\frac{{dW}}{{dt}} = \frac{{\partial W}}{{\partial x}}\frac{{dx}}{{dt}} + \frac{{\partial W}}{{\partial y}}\frac{{dy}}{{dt}} + \frac{{\partial W}}{{\partial z}}\frac{{dz}}{{dt}}\)

    Calculation:

    f(x, y) = ex sin y

    \(\frac{{\partial f}}{{\partial x}} = {e^x}\sin y\)

    \(\frac{{\partial f}}{{\partial y}} = {e^x}\cos y\)

    At t = 0, \(\frac{{\partial f}}{{\partial x}} = e\sin 0 = 0\)

    \(\frac{{\partial f}}{{\partial y}} = {e^1}\cos 0 = e\)

    x = t3 + 1 and y = t4 + t

    \(\frac{{dx}}{{dt}} = 3{t^2},\frac{{dy}}{{dt}} = 4{t^3} + 1\)

    At t = 0, x = 1 and y = 0

    At t = 0, \(\frac{{dx}}{{dt}} = 0,\frac{{dy}}{{dt}} = 1\)

    \(\frac{{df}}{{dt}} = \frac{{\partial f}}{{\partial x}}\frac{{dx}}{{dt}} + \frac{{\partial f}}{{\partial y}}\frac{{dy}}{{dt}}\)

    = 0 + e = e = 2.718

  • Question 13
    2 / -0.33
    Consider the differential equation \(\frac{{dy}}{{dx}} + 10y = f\left( x \right),x > 0\), where f(x) is continuous function such that \(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = 1\). Then the value of \(\mathop {\lim }\limits_{x \to \infty } y\left( x \right)\) is ________.
    Solution

    Concept:

    The standard form of a first-order linear differential equation is,

    Form 1: \(\frac{{dy}}{{dx}} + Py = Q\)

    Where P and Q are the functions of x.

    Integrating factor, \(IF = {e^{\smallint Pdx}}\)

    Now, the solution for the above differential equation is,

    \(y\left( {IF} \right) = \smallint IF.Qdx+C\)

    Form 2: \(\frac{{dx}}{{dy}} + Px = Q\)

    Where P and Q are the functions of y.

    Integrating factor, \(IF = {e^{\smallint Pdy}}\)

    Now, the solution for the above differential equation is,

    \(x\left( {IF} \right) = \smallint IF.Qdy+C\)

    Calculation:

    \(\frac{{dy}}{{dx}} + 10y = f\left( x \right),x > 0\)

    It is the first order linear differential equation.

    Integrating factor, \(I.F. = {e^{\smallint 10dx}} = {e^{10x}}\)

    The solution of the differential equation is,

    \(y\left( x \right){e^{10x}} = \smallint {e^{10x}}f\left( x \right)dx + C\)

    \( \Rightarrow y\left( x \right) = {e^{ - 10x}}\smallint {e^{10x}}f\left( x \right)dx + C{e^{ - 10x}}\)

    \(\mathop {\lim }\limits_{x \to \infty } y\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \frac{{\smallint {e^{10x}}f\left( x \right)dx}}{{{e^{10x}}}} + \mathop {\lim }\limits_{x \to \infty } C{e^{ - 10x}}\)

    \( = \mathop {\lim }\limits_{x \to \infty } \frac{{\smallint {e^{10x}}f\left( x \right)dx}}{{{e^{10x}}}}\)

    By applying the L-Hospitals rule,

    \( = \mathop {\lim }\limits_{x \to \infty } \frac{{{e^{10x}}f\left( x \right)}}{{10{e^{10x}}}}\)

    \( = \frac{1}{{10}}\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \frac{1}{{10}} = 0.1\)

  • Question 14
    2 / -0.33

    Consider the following system of linear equations

    x + y + 5z = 3, x + 2y + mz = 5 and x + 2y + 4z = k

    The system is consistent if

    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}\\ \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}} \end{array}} \right]\) and \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}&{{b_1}}\\ {{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}&{{b_2}}\\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}&{{b_m}} \end{array}} \right]\)

    A is the coefficient matrix and [A|B] is called an augmented matrix of the given system of equations.

    We can find the consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to the rank of an augmented matrix and it is equal to the number of unknowns, then system is consistent and there is a unique solution.

    The rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to the rank of an augmented matrix and it is less than the number of unknowns, then the system is consistent and there are an infinite number of solutions.

    The rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to the rank of the augmented matrix, then the system is inconsistent, and it has no solution.

    Rank of A ≠ Rank of augmented matrix

    Calculation:

    The given system of equations can be represented in a matrix form as shown below.

    \(A = \left[ {\begin{array}{*{20}{c}} 1&1&5\\ 1&2&m\\ 1&2&4 \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 3\\ 5\\ k \end{array}} \right]\)

    The Augmented matrix can be written by

    \([A|B] = \left[ {\begin{array}{*{20}{c}} 1&1&5\\ 1&2&m\\ 1&2&4 \end{array}{\rm{|}}\begin{array}{*{20}{c}} 3\\ 5\\ k \end{array}} \right]\)

    R3 → R3 – R1, R2 → R2 – R1

    \( = \left[ {\begin{array}{*{20}{c}} 1&1&5\\ 0&1&{m - 5}\\ 0&1&{ - 1} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 3\\ 2\\ {k - 3} \end{array}} \right]\)

    R3 → R3 – R2

    \(= \left[ {\begin{array}{*{20}{c}} 1&1&5\\ 0&1&{m - 5}\\ 0&0&{4 - m} \end{array}{\rm{|}}\begin{array}{*{20}{c}} 3\\ 2\\ {k - 5} \end{array}} \right]\)

    The system is consistent if, the rank of matrix = rank of an augmented matrix.

    Option 1: m ≠ 4

    For any value of k, the rank (A) = rank (A|B) = 3

    The system is consistent.

    Option 2: k ≠ 5

    For m = 4, the rank (A) ≠ rank (A|B)

    The system is inconsistent.

    Option 3: m = 4

    For k ≠ 5, the rank (A) ≠ rank (A|B)

    The system is inconsistent.

    Option 4: k = 5

    For m = 4, the rank (A) = rank (A|B) = 2

    The system is consistent.

    For m ≠ 4, the rank (A) = rank (A|B) = 3

    The system is consistent.

  • Question 15
    2 / -0.33
    Consider a sequence of independent Bernoulli trials with probability of success in each trial being \(\frac{1}{5}\). Then which of the following statements is/are TRUE?
    Solution

    Concept:

    Binomial distribution:

    Let p is the probability that an event will happen in a single trail (called the probability of success) and

    q = 1 – p is the probability that an event will fail to happen (probability of failure)

    The probability that the event will happen exactly r times in n trails (i.e. x successes and n – r failures will occur) is given by the probability function

    \(f\left( x \right) = P\left( {X = r} \right) = {n_{{C_r}}}{p^r}{q^{n - r}}\)

    where the random variable X denotes the number of successes in n trials and r = 0, 1, 2, … n

    For Binomial distribution,

    Mean = μ = np

    Variance = σ2 = npq

    Standard deviation = σ = √(npq)

    Calculation:

    Let V be the event that occurs in a trial with probability p. Mathematical expectation E of the number of trials to first occurrence of V in a sequence of trials is E = 1/p.

    Similarly, the expected number of trials to get nth success = n/p

    Given that, the probability (p) = 1/5 = 0.2

    The expected number of trials to get first success = 1/0.2 = 5

    So, the expected number of failures preceding the first success is 4

    The expected number of trials to get second success = 2/0.2 = 10

    Expected number of successes in first 50 trials = np = 50 × 0.2 = 10

  • Question 16
    2 / -0.33
    The first four terms of the Taylor series expansion of \(f\left( z \right) = \frac{{z + 1\;}}{{\left( {z - 3} \right)\left( {z - 4} \right)}},\) when z = 2 is 
    Solution

    \(f\left( x \right) = \frac{{z + 1}}{{\left( {z - 3} \right)\left( {z - 4} \right)}}\)

    At z = 2

    Let z – 2 = t ⇒ z = t + 2

    Now, the function becomes

    \(f\left( t \right) = \frac{{t + 3}}{{\left( {t - 1} \right)\left( {t - 2} \right)}}\)

    By using partial fractions, f(t) can be written as

    \(\Rightarrow f\left( t \right) = \frac{{ - 4}}{{\left( {t - 1} \right)}} + \frac{5}{{\left( {t - 2} \right)}}\)

    \(= \frac{{ - 4}}{{ - \left( {1 - t} \right)}} + \left( {\frac{5}{{ - 2\left( {1 - \frac{t}{2}} \right)\;}}} \right)\)

    \(= 4{\left( {1 - t} \right)^{ - 1}} - \frac{5}{2}\;{\left( {1 - \frac{t}{2}} \right)^{ - 1}}\)

    By using Binomial expansion,

    \(\Rightarrow f\left( t \right) = 4\left[ {1 + t + {t^2} + {t^3} + \ldots } \right] - \frac{5}{2}\left[ {1 + \frac{t}{2} + {{\left( {\frac{t}{2}} \right)}^2} + {{\left( {\frac{t}{2}} \right)}^3} + \ldots } \right]\)

    \(= 4\left[ {1 + t + {t^2} + {t^3} + \ldots } \right] - \frac{5}{2}\left[ {1 + \frac{t}{2} + \frac{{{t^2}}}{4} + \frac{{{t^3}}}{8} \ldots } \right]\)

    \(= \left( {4 - \frac{5}{2}} \right) + t\left( {4 - \frac{5}{4}} \right)+ {t^2}\left( {4 - \frac{5}{8}} \right) + {t^3}\left( {4 - \frac{5}{{16}}} \right) + \ldots\)

    \(\Rightarrow f\left( t \right) = \frac{3}{2} + \frac{{11}}{4}t + \frac{{27}}{8}{t^2} + \frac{{59}}{{16}}{t^3} + \ldots\)

    Now put t = z – 2

    \(\Rightarrow f\left( z \right) = \frac{3}{2} + \frac{{11}}{4}\left( {z - 2} \right) + \frac{{27}}{8}{\left( {z - 2} \right)^2} + \frac{{59}}{{16}}{\left( {z - 2} \right)^3} + \ldots \)

  • Question 17
    2 / -0.33
    Let u(x,y) = x3 + a x2 y + b x y2 + 2y3 be a harmonic function and v(x, y) its harmonic conjugate. If v(0, 0) = 1, then |a + b + v(1, 1)| is equal to _____
    Solution

    u(x, y) = x3 + ax2y + bxy2 + 2y3

    The given function is harmonic function.

    From CR equations,

    ux = vy , uy = -vx

    ux = 3x2 + 2axy + by2, uy = ax2 + 2bxy + 6y2

    ⇒ vy = 3x2 + 2axy + by2

    By integrating on both sides with respect to y.

    \(\Rightarrow \smallint {v_y}dy = \smallint \left( {3{x^2} + 2axy + b{y^2}} \right)dy\)

    ⇒ v = 3x2y + axy2 + \(\frac{{b{y^3}}}{3} + \phi \left( x \right)\)

    ⇒ vx = 6xy + ay2 + ϕ’(x) = -uy

    ⇒ 6xy + ay2 + ϕ’(x) = -ax2 – 2bxy – 6y2

    By comparing on both sides,

    -2b = 6 ⇒ b = -3

    a = -6

    ϕ’(x) = -ax2

    \(\Rightarrow \phi \left( x \right) = - \frac{{a{x^3}}}{3} + C = \frac{{6{x^3}}}{3} + C = 2{x^3} + C\)

    Now, v = 3x2y – 6xy2 – y3 + 2x3 + C

    Given that, v (0, 0) = 1

    ⇒ C = 1

    Now, V = 3x2y – 6xy2 – y3 + 2x3 + 1

    v(1, 1) = 3 – 6 – 1 + 2 – 1 = -1

    |a + b + v (1, 1)| = |- 6 – 3 – 1| = 10
  • Question 18
    2 / -0.33

    Let A and B two n × n matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements.

    I. rank(AB) = rank(A) rank(B)

    II. det(AB) = det(A) det(B)

    III. rank(A + B) ≤ rank(A) + rank(B)

    IV. det(A + B) ≤ det(A) + det(B)

    Which of the above statements are TRUE?
    Solution

    Concept:

    Properties of Rank:

    Rank of a matrix is the number of independent rows in the given matrix. Given two square matrices A and B of order n × n, we have following properties:

    1. Rank of product of A and B i.e. Rank (AB) ≥ Rank (A) + Rank (B) – order of square matrix

    2. Rank of sum of A and B i.e. Rank (A + B) ≤ Rank (A) + Rank (B).

    Properties of Determinant:

    Given two square matrices A and B of order n × n and their determinants Det(A) and Det(B) respectively, determinant of their product i.e Det( AB) = Det(A) * Det(B). However, the same does not hold for the addition of the given matrices.

    Example:

    Consider two square matrices A and B each of order 2×2.

    \(A = \left[ {\begin{array}{*{20}{c}}2&1\\3&4\end{array}} \right]\;\;\;\;\;\;Rank\left( A \right) = 2,\;\;Det\left( A \right) = 5\)

    \(B = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\;\;\;\;\;Rank\left( B \right) = 2,\;\;\;\;\;\;\;\;Det\left( B \right) = 1\)

    \(AB = \left[ {\begin{array}{*{20}{c}}2&1\\3&4\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2&1\\3&4\end{array}} \right]\;\;\;\;\;\;\;\;\;\;\;\;\;\;Rank\left( {AB} \right) = 2,\;\;\;\;\;Det\left( {AB} \right) = 5\)

    \(A + B = \;\left[ {\begin{array}{*{20}{c}}2&1\\3&4\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}}3&1\\3&5\end{array}} \right]\;\;\;\;\;\;\;Rank\left( {A + B} \right) = 2,\;Det\left( {A + B} \right) = 12\)

    Statement I is FALSE.

    Rank of product matrix AB is 2. Product of Rank(A) and Rank(B) is: 2*2 = 4. Therefore, rank of product matrix is not equal to the product of the rank of individual matrices.

    Statement II is TRUE. 

    Det(AB)= 5 = Det(A) * Det(B)

    Statement III is TRUE.  

    Rank(A + B) = 2. Sum of rank of A and B is: 2 + 2 = 4. Therefore, the relation: Rank (A + B) ≤ Rank (A) + Rank (B) holds true

    Therefore, rank of the addition matrix is less than or equal to the sum of rank of the individual matrices.

    Statement IV is FALSE.  

    Det(A+B)= 12, which is greater than the sum of the determinants of individual matrices.
  • Question 19
    2 / -0.33

    Let A be (n x n) real valued square symmetric matrix of rank 2 with \(\mathop \sum \limits_{i = 1}^n \mathop \sum \limits_{j = 1}^n A_{ij}^2 = 50\). Consider the following statements.

    (I) One eigenvalue must be in [–5, 5]

    (II) The eigenvalue with the largest magnitude must be strictly greater than 5

    Which of the above statements about eigenvalues of A is/are necessarily CORRECT?
    Solution

    Try to find out the eigen values by taking the example of matrix with rank 2. Then check if given statement follows from that or not.

    Calculation:

    A be (n x n) real valued square symmetric matrix of rank 2.

    \(\mathop \sum \limits_{i = 1}^n \mathop \sum \limits_{j = 1}^n A_{ij}^2 = 50\),

    which means, sum of square of all elements of A = 50.

    Also, rank of A = 2 i.e. we have (n – 2) eigen values are 0.

    So eigen values are in the form of a1, a2,0, 0, ……

    Let us consider a matrix A = \(\left[ {\begin{array}{*{20}{c}}{ - 5}&0\\0&5\end{array}} \right]\)

    Here, for this eigen values are [-5, 5].

    Take another example, B = \(\left[ {\begin{array}{*{20}{c}}5&0&0\\0&5&0\\0&0&0\end{array}} \right]\) and C = \(\left[ {\begin{array}{*{20}{c}}6&0&0\\0&{\surd 14}&0\\0&0&0\end{array}} \right]\)

    Matrix B and C are of rank 2 and symmetric.

    Eigen value for A = 5, 5, 0

    And eigen value for B = \(6,\;\sqrt {14} ,\;0\)

    As 0 and 5 are in the range of [-5, 5], So statement 1 is correct.

    But eigen value with largest magnitude which is 6 for C must be strictly greater than 5 and in case of B largest value is 5 which is not strictly greater than 5, So, second statement is incorrect here.

  • Question 20
    2 / -0.33
    The solution of the partial differential equation \({{x}^{2}}\frac{\partial z}{\partial x}+{{y}^{2}}\frac{\partial z}{\partial y}=\left( x+y \right)z\) is
    Solution

    Concept:

    Xp + Yq = Z

    Where \(p\to \frac{dz}{dx}\)

    \(q\to \frac{dz}{dy}\) & X, Y and Z are function of x, y & z

    Then it’s auxiliary equation will be

    \(\frac{dx}{X}=\frac{dy}{Y}=\frac{dz}{Z}\) & on solving above we get u = c1 & v = c2

    Where c1 & c2 = constants u & v are functions of x, y, z

    Then solution of the above equation will be

    f(u, v) = 0 or u = ϕ (v)

    Calculation:

    We are given \(\frac{{{x}^{2}}dz}{dx}+\frac{yd{{z}^{2}}}{dy}=\left( x+y \right)z\)

    Then its auxiliary equation will be,

    \(\frac{dx}{{{x}^{2}}}=\frac{dy}{{{y}^{2}}}=\frac{dz}{\left( x+y \right)z}\) ---(1)

    On solving first two parts of the above equation we

    \(\int \frac{dx}{{{x}^{2}}}=\int \frac{dy}{y}\Rightarrow \frac{1}{x}=\frac{1}{y}+{{c}_{1}}\Rightarrow {{c}_{1}}=\frac{1}{x}-\frac{1}{y}\)

    We can write equation (1) as expressed below

    \(\frac{\frac{dx}{x}}{x}=\frac{\frac{dy}{y}}{y}=\frac{\frac{dz}{z}}{x+y}\)

    \(\Rightarrow \frac{dx}{x}+\frac{dy}{y}=\frac{dz}{z}\)

    By integrating the above equation,

    In x + In y = In z + In c2

    ⇒ In c2 = In x + In y – In z

    \(\Rightarrow {{c}_{2}}=\frac{xy}{z}\)

    Hence solution of given equation will be

    f(c1, c2) = 0

    \(f\left[ \frac{1}{x}-\frac{1}{y},\frac{xy}{z} \right]=0\)
  • Question 21
    2 / -0.33
    The particular integral of the differential equation (2D3 – 7D2 + 7D – 2) y = e-8x is
    Solution

    Explanation:

    Given:

    Differential equation: (2D3 – 7D2 + 7D – 2) y = e-8x

    Particular integral, \(PI=\frac{1}{f\left( D \right)}\phi \left( x \right)\)

    \(=\frac{1}{2{{D}^{3}}-7{{D}^{2}}+7D-2}{{e}^{-8x}}\)

    \(=\frac{1}{2{{\left( -8 \right)}^{3}}-7{{\left( -8 \right)}^{2}}+7\left( -8 \right)-2}{{e}^{-8x}}\)

    \(=-\frac{1}{1530}{{e}^{-8x}}\)
  • Question 22
    2 / -0.33
    The equations of the two lines of regression are: 4x + 3y + 7 = 0 and 3x + 4y + 8 = 0. The correlation coefficient between x and y is
    Solution

    Given lines are:

    4x + 3y + 7 = 0

    3x + 4y + 8 = 0

    Let  4x + 3y + 7 = 0 be the line of x on y and 3x + 4y + 8 = 0 be the line of y on x.

    \(4x + 3y + 7 = 0 \)

    \(x = - \frac{{7}}{4} - \frac{3}{4}y\)

    \(3x + 4y + 8 = 0 \)

    \(y = - \frac{8}{4} - \frac{3}{4}x\)

    The regression coefficient of x on y is:

    \({b_{xy}} = - \frac{3}{4}\)

    The regression coefficient of y on x is:

    \({b_{yx}} = - \frac{3}{4}\)

    The correlation coefficient will be:

    \(r = \sqrt {{b_{xy}}.{b_{yx}}} = \sqrt {\left( { - \frac{3}{4} \times - \frac{3}{4}} \right)}\)

    \(\Rightarrow r = \frac{3}{4} = 0.75\)

    Since \({b_{xy}},\;{b_{yx}}\) are both negative, r is also negative. ⇒ r = -0.75

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now