Given system is homogeneous whose solution is X(t) = eAt X(0)
Now, eAt = L-1 {(sI - A)-1}
\(\left[ {sI - A} \right] = s\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}0&1\\{ - 2}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}s&{ - 1}\\2&s\end{array}} \right]\)
\({\left( {sI - A} \right)^{ - 1}} = \frac{{Adj\left( {sI - A} \right)}}{{\left| {sI - A} \right|}}\)
\(Adj\left( {sI - A} \right) = {\left[ {\begin{array}{*{20}{c}}{{C_{11}}}&{{C_{12}}}\\{{C_{21}}}&{{C_{22}}}\end{array}} \right]^T} = {\left[ {\begin{array}{*{20}{c}}s&{ - 2}\\1&s\end{array}} \right]^T} = \left[ {\begin{array}{*{20}{c}}s&1\\{ - 2}&s\end{array}} \right]\)
|sI - A| = s2 + 2
\({\left( {sI - A} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\frac{s}{{{s^2} + 2}}}&{\frac{1}{{{s^2} + 2}}}\\{\frac{{ - 2}}{{{s^2} + 2}}}&{\frac{s}{{{s^2} + 2}}}\end{array}} \right]\)
\({e^{At}} = {L^{ - 1}}\left[ {\begin{array}{*{20}{c}}{\frac{s}{{{s^2} + 2}}}&{\frac{1}{{{s^2} + 2}}}\\{\frac{{ - 2}}{{{s^2} + 2}}}&{\frac{s}{{{s^2} + 2}}}\end{array}} \right]\)
\({L^{ - 1}}\left\{ {\frac{s}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ {\frac{s}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}} \right\} = \cos \sqrt {2t} \)
\({L^{ - 1}}\left\{ {\frac{1}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&{\frac{{\sqrt 2 }}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}}\end{array}} \right\} = \frac{1}{{\sqrt 2 }}\sin \sqrt 2 t\)
\({L^{ - 1}}\left\{ {\frac{{ - 2}}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ { - \begin{array}{*{20}{c}}{\sqrt 2 }&{\frac{{\sqrt 2 }}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}}\end{array}} \right\} = - \sqrt 2 \sin \sqrt 2 t\)
\(\therefore {e^{At}} = \left[ {\begin{array}{*{20}{c}}{\cos \sqrt {2\;t} }&{\frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{ - \sqrt 2 \sin \sqrt 2 \;t}&{\cos \sqrt 2 \;t}\end{array}} \right]\)
\(\therefore X\left( t \right) = {e^{At}}X\left( 0 \right) = {e^{At}}\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\cos \sqrt 2 \;t + \frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{\cos \sqrt 2 \;t - \sqrt 2 \sin \sqrt 2 \;t}\end{array}} \right]\)
∴ Output response Y(t) = [1 - 1] X(t)
\(= \left[ {1 - 1} \right]\left[ {\begin{array}{*{20}{c}}{\cos \sqrt 2 \;t + \frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{\cos \sqrt 2 \;t - \sqrt 2 \sin \sqrt 2 \;t}\end{array}} \right]\)
\(= \frac{3}{{\sqrt 2 }}\sin \sqrt 2 \;t\)
\(Y\left( t \right) = \frac{3}{{\sqrt 2 }}\sin \sqrt 2 \;t\) is the required response