Self Studies

Control Systems Test 1

Result Self Studies

Control Systems Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    The closed loop transfer function of a unity feedback system is given as \(\frac{{10\left( {s + 1} \right)}}{{{s^2} + 20s + 10}}\). The steady state error to a unit ramp input is
    Solution

    Concept:

    KP = position error constant = \(\mathop {\lim }\limits_{s \to 0} G\left( s \right)H\left( s \right)\)

    Kv = velocity error constant = \(\mathop {\lim }\limits_{s \to 0} sG\left( s \right)H\left( s \right)\)

    K= acceleration error constant = \(\mathop {\lim }\limits_{s \to 0} {s^2}G\left( s \right)H\left( s \right)\)

    Steady state error for different inputs is given by

    Input

    Type -0

    Type - 1

    Type -2

    Unit step

    \(\frac{1}{{1 + {K_p}}}\)

    0

    0

    Unit ramp

    \(\frac{1}{{{K_v}}}\)

    0

    Unit parabolic

    \(\frac{1}{{{K_a}}}\)

     

    From the above table, it is clear that for type – 1 system, a system shows zero steady-state error for step-input, finite steady-state error for Ramp-input and \(\infty \) steady-state error for parabolic-input.

    Application:

    \(CLTF = \frac{{10\left( {s + 1} \right)}}{{{s^2} + 20s + 10}}\)

    \(OLTF = \frac{{10\left( {s + 1} \right)}}{{{s^2} + 20s + 10 - 10\left( {s + 1} \right)}} = \frac{{10\left( {s + 1} \right)}}{{s\left( {10 + s} \right)}}\)

    Thus, the given system is a type-1 system and the input is ramp input

    \({k_v} = \mathop {\lim }\limits_{s \to 0} s\left( {\frac{{10\left( {s + 1} \right)}}{{s\left( {s + 10} \right)}}} \right) = 1\)

    \({e_{ss}} = \frac{1}{1} = 1\)

    Common Mistake: Steady state error formulas are applicable only to open loop transfer function. Therefore if closed loop transfer function is given, we must first calculate the open loop transfer function to apply the formula.
  • Question 2
    2 / -0.33

    The open loop transfer function of a unity feedback system is given by

    \(\frac{1}{{s\left( {3s + 1} \right)}}{e^{ - 2Ts}},T > 0\)

    It is shown that the phase angle of the loop transfer function at frequency ω0 is 0. Which of the following equation is satisfied by ω0
    Solution

    \(G\left( s \right)H\left( s \right) = \frac{1}{{s\left( {3s + 1} \right)}}{e^{ - 2Ts}}\)

    \(G\left( {j\omega } \right)H\left( {j\omega } \right) = \frac{1}{{j\omega \left( {3j\omega + 1} \right)}}{e^{ - 2Tj\omega }}\)

    \(\angle G\left( {j\omega } \right)H\left( {j\omega } \right) = - 90 - {\tan ^{ - 1}}\left( {3\omega } \right) - 2T\omega \)

    At ω = ω0, the phase angle is zero.

    \( \Rightarrow 0 = - 90 - {\tan ^{ - 1}}\left( {3{\omega _0}} \right) - 2T{\omega _0}\)

    \( \Rightarrow {\tan ^{ - 1}}\left( {3{\omega _0}} \right) = - \left( {90 + 2T{\omega _0}} \right)\)

    ⇒ 3ω0 = - tan(90 + 2Tω0)

    ⇒ 3ω0 = cot(2ω0T)
  • Question 3
    2 / -0.33

    Consider a unity feedback closed-loop system whose open-loop transfer function is \(\frac{{2\left( {s + 8} \right)}}{{{s^2} + 7s - 8}}\)

    The mapped contour of the Nyquist contour in the G(s) H(s) plane (where G(s) H(s) is the open-loop transfer function)

    Solution

    Concept:

    From Nyquist stability criterion, N = P – Z

    where, N = number of encirclements of point (–1, 0)

    Z = number of zeros of (1 + G(s)·H(s)) or the number of poles of closed-loop system in the right half-plane.

    For stability, z = 0,

    Calculation:

    Open loop transfer function:

    \(G\left( s \right)H\left( s \right) = \frac{{2\left( {s + 8} \right)}}{{{s^2} + 7s - 8}} = \frac{{2\left( {s + 8} \right)}}{{\left( {s + 8} \right)\left( {s - 1} \right)}}\)

    Number of right side open loop poles (p) = 1

    Closed loop transfer function

    \(= \frac{{\frac{{2\left( {s + 8} \right)}}{{{s^2} + 7s - 8}}}}{{1 + \frac{{2\left( {s + 8} \right)}}{{{s^2} + 7s - 8}}}}\)

    \(= \frac{{2\left( {s + 8} \right)}}{{{s^2} + 7s - 8 + 2s + 16}}\)

    \(= \frac{{2\left( {s + 8} \right)}}{{{s^2} + 9s + 8}}\)

    \(= \frac{{2\left( {s + 8} \right)}}{{\left( {s + 1} \right)\left( {s + 8} \right)}}\)

    Number of closed loop poles (z) = 0

    From Nyquist stability

    N = P – Z = 1

    Therefore Nyquist contour encircle the -1 point once in the counterclockwise direction.

  • Question 4
    2 / -0.33

    The transfer function of a system is given by \(G\left( s \right) = \frac{{{e^{ - \frac{s}{{500}}}}}}{{s + 500}}\)

    The input to the system is x(t) = sin 100 πt.

    In a periodic steady-state, the output of the system is found to be y(t) = A sin (100 πt - ϕ). The phase angle (ϕ) in degrees is _______ 
    Solution

    \(G\left( s \right) = \frac{{{e^{ - \frac{s}{{500}}}}}}{{s + 500}}\)

    ϕ = ∠G(jω) at ω = 100π

    \( = - {\tan ^{ - 1}}\left( {\frac{\omega }{{500}}} \right) - \frac{\omega }{{500}}\)

    \( = - {\tan ^{ - 1}}\left( {\frac{{100\pi }}{{500}}} \right) - \frac{{100\pi }}{{500}}\)

    \( = - {\tan ^{ - 1}}\left( {\frac{\pi }{5}} \right) - \frac{\pi }{5}\)

    = -68.12°

    y(t) = A sin (100 πt - 68.12°)

  • Question 5
    2 / -0.33

    Given the following polynomial equation

    s3 – s2 + 3s + 1 = 0

    The number of roots of the polynomial, which have real parts strictly less than 1, is_______
    Solution

    s3 – s2 + 3s + 1 = 0

    put s = z + 1

    (z + 1)3 – (z + 1)2 + 3(z + 1) + 1 = 0

    z3 + 1 + 3z2 + 3z – z2 – 2z – 1 + 3z + 3 + 1 = 0

    z3 + 2z2 + 4z + 4 = 0

    Taking Routh criteria for the given characteristic equation

    z3

    1

    4

    z2

    2

    4

    z1

    2

    0

    z0

    4

     

    There are no sign changes in the first column of the Routh array.

    So, the number roots lie left side of s = 1, are 3.
  • Question 6
    2 / -0.33

    Given \(\rm G\left( s \right)H\left( s \right) = \frac{K}{{s\left( {s + 4} \right)\left( {{s^2} + 4s + 12} \right)}}\)is the open loop transfer function of a system. Then total number of complex break points is.

    Solution

    Given \(\rm G\left( s \right)H\left( s \right) = \frac{K}{{s\left( {s + 4} \right)\left( {{s^2} + 4s + 12} \right)}}\)

    \(\rm 1 + G\left( s \right)H\left( s \right) = 0\)

    \(\rm 1 + \frac{K}{{s\left( {s + 4} \right)\left( {{s^2} + 4s + 12} \right)}} = 0\)

    \(\therefore K = - s\left( {s + 4} \right)\left( {{s^2} + 4s + 12} \right)\)

    for break point calculation we should have \(\rm \frac{{dK}}{{ds}} = 0\)

    \(\rm \therefore \frac{d}{{ds}}\left[ {\left( {{s^4} + 8{s^3} + 28{s^2} + 48s} \right)\left( { - 1} \right)} \right] = 0\)

    \(\rm 4{s^3} + 24{s^2} + 56s + 48 = 0\)

    \(\rm {s^3} + 6{s^2} + 14s + 12 = 0\)

    Break away point are, \(\rm -2, -2+j√2, -2-j√2\)

    ∴ Number of complex Break away points are = 2

  • Question 7
    2 / -0.33
    Consider the system \(\dot x\left( t \right) = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]x\left( t \right) + \left[ {\begin{array}{*{20}{c}} {{b_1}}\\ {{b_2}} \end{array}} \right]u\left( t \right),c\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}} \end{array}} \right]u\left( t \right)\). The conditions for complete state controlling and complete observability is
    Solution

    \(\dot x\left( s \right) = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]x\left( t \right) + \left[ {\begin{array}{*{20}{c}} {{b_1}}\\ {{b_2}} \end{array}} \right]u\left( t \right)\)

    \(C\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}} \end{array}} \right]x\left( t \right)\)

    \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&0 \end{array}} \right]B = \left[ {\begin{array}{*{20}{c}} {{b_1}}\\ {{b_2}} \end{array}} \right]C = \left[ {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}} \end{array}} \right]\)

    Controlling matrix, \({Q_C} = \left[ {\begin{array}{*{20}{c}} B&{AB} \end{array}} \right]\)

    \({Q_C} = \left[ {\begin{array}{*{20}{c}} {{b_1}}&{{b_1} + {b_2}}\\ {{b_2}}&{{b_2}} \end{array}} \right]\)

    \(\left| {{Q_C}} \right| = {b_1}{b_2} - {b_2}\left( {{b_1} + {b_2}} \right) = - b_2^2 \ne 0\)

    Given the system is controllable for all values of b2 except b2 = 0

    Observability matrix, \({Q_A} = \left[ {\begin{array}{*{20}{c}} C\\ {CA} \end{array}} \right]\)

    \({Q_A}\left[ {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}}\\ {{d_1}}&{{d_1} + {d_2}} \end{array}} \right]\)

    \(\left| {{Q_A}} \right| = {d_1}\left( {{d_1} + {d_2}} \right) - {d_1}{d_2} = d_1^2 \ne 0\)

    Given the system is observable for all values of d1 except d1 = 0.
  • Question 8
    2 / -0.33

    Obtain the complete time response of system given by,

    \(\dot X\left( t \right) = \left[ {\begin{array}{*{20}{c}}0&1\\{ - 2}&0\end{array}} \right]X\left( t \right)\;where\;X\left( 0 \right) = \left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\)

    And Y(t) = [1 - 1]X(t)
    Solution

    Given system is homogeneous whose solution is X(t) = eAt X(0)

    Now, eAt = L-1 {(sI - A)-1}

    \(\left[ {sI - A} \right] = s\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}0&1\\{ - 2}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}s&{ - 1}\\2&s\end{array}} \right]\)

    \({\left( {sI - A} \right)^{ - 1}} = \frac{{Adj\left( {sI - A} \right)}}{{\left| {sI - A} \right|}}\)

    \(Adj\left( {sI - A} \right) = {\left[ {\begin{array}{*{20}{c}}{{C_{11}}}&{{C_{12}}}\\{{C_{21}}}&{{C_{22}}}\end{array}} \right]^T} = {\left[ {\begin{array}{*{20}{c}}s&{ - 2}\\1&s\end{array}} \right]^T} = \left[ {\begin{array}{*{20}{c}}s&1\\{ - 2}&s\end{array}} \right]\)

    |sI - A| = s2 + 2

    \({\left( {sI - A} \right)^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\frac{s}{{{s^2} + 2}}}&{\frac{1}{{{s^2} + 2}}}\\{\frac{{ - 2}}{{{s^2} + 2}}}&{\frac{s}{{{s^2} + 2}}}\end{array}} \right]\)

    \({e^{At}} = {L^{ - 1}}\left[ {\begin{array}{*{20}{c}}{\frac{s}{{{s^2} + 2}}}&{\frac{1}{{{s^2} + 2}}}\\{\frac{{ - 2}}{{{s^2} + 2}}}&{\frac{s}{{{s^2} + 2}}}\end{array}} \right]\)

    \({L^{ - 1}}\left\{ {\frac{s}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ {\frac{s}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}} \right\} = \cos \sqrt {2t} \)

    \({L^{ - 1}}\left\{ {\frac{1}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&{\frac{{\sqrt 2 }}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}}\end{array}} \right\} = \frac{1}{{\sqrt 2 }}\sin \sqrt 2 t\)

    \({L^{ - 1}}\left\{ {\frac{{ - 2}}{{{s^2} + 2}}} \right\} = {L^{ - 1}}\left\{ { - \begin{array}{*{20}{c}}{\sqrt 2 }&{\frac{{\sqrt 2 }}{{{s^2} + {{\left( {\sqrt 2 } \right)}^2}}}}\end{array}} \right\} = - \sqrt 2 \sin \sqrt 2 t\)

    \(\therefore {e^{At}} = \left[ {\begin{array}{*{20}{c}}{\cos \sqrt {2\;t} }&{\frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{ - \sqrt 2 \sin \sqrt 2 \;t}&{\cos \sqrt 2 \;t}\end{array}} \right]\)

    \(\therefore X\left( t \right) = {e^{At}}X\left( 0 \right) = {e^{At}}\left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\cos \sqrt 2 \;t + \frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{\cos \sqrt 2 \;t - \sqrt 2 \sin \sqrt 2 \;t}\end{array}} \right]\)

    ∴ Output response Y(t) = [1 - 1] X(t)

    \(= \left[ {1 - 1} \right]\left[ {\begin{array}{*{20}{c}}{\cos \sqrt 2 \;t + \frac{1}{{\sqrt 2 }}\sin \sqrt 2 \;t}\\{\cos \sqrt 2 \;t - \sqrt 2 \sin \sqrt 2 \;t}\end{array}} \right]\)

    \(= \frac{3}{{\sqrt 2 }}\sin \sqrt 2 \;t\)

    \(Y\left( t \right) = \frac{3}{{\sqrt 2 }}\sin \sqrt 2 \;t\) is the required response
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now