Concept:
In a two-wattmeter method,
Total power (P) = P1 + P2
The power factor of the system = cos ϕ
\(\tan \phi = \sqrt 3 \frac{{[{P_1} - {P_2}]}}{{\left[ {{P_1} + {P_2}} \right]}}\)
Where P1 & P2 are the power of wattmeter A & B
Calculation:
P1 = 7500 W, P2 = -1500 W
V = 200 Ω, f = 50 Hz
\(\tan \phi = \sqrt 3 \frac{{\left[ {{P_1} - {P_2}} \right]}}{{\left[ {{P_1} + {P_2}} \right]}} = \frac{{\sqrt 3 \left[ {7500 - \left( { - 1500} \right)} \right]}}{{\left[ {7500 + \left( { - 1500} \right)} \right]}}\)
\(\phi = {\tan ^{ - 1}}\sqrt 3 \left( {\frac{{9000}}{{6000}}} \right)\)
⇒ ϕ = 68.94°
cos ϕ = cos 68.94° = 0.359
For the whole power measured to appear on wattmeter A, the reading of wattmeter will be zero.
In this case, P1 = 6000 W, P2 = 0 W
Power factor at this case = 0.5
Power consumed by each phase \(= \frac{{6000}}{3} = 2000\;W\)
Voltage of each phase \(= \frac{{200}}{{\sqrt 3 }} = 115.47\;V\)
Current in each phase \(= \frac{{2000}}{{115.47\; \times \;0.359}} = 48.246\;A\)
The impedance of each phase \(= \frac{{{V_{ph}}}}{{{I_{ph}}}} = \frac{{115.47}}{{48.246}} = 2.39\;{\rm{\Omega }}\)
The resistance of each phase \(= \frac{{{P_{ph}}}}{{{{\left( {{I_{ph}}} \right)}^2}}} = 0.859\;{\rm{\Omega }}\)
The reactance of each phase \(= \sqrt {{{\left( {2.39} \right)}^2} - {{\left( {0.859} \right)}^2}} = 2.23\;{\rm{\Omega }}\)
∴ cos ϕ = 0.5
⇒ ϕ = cos-1 (0.5)
tan ϕ = tan (cos-1 0.5) = √3 = 1.732
Now, \(\tan \phi = \frac{X}{R}\)
∴ Reactance of circuit, X = R tan ϕ
X = 0.859 × 1.73 = 1487 Ω
∴ Capacitive reactance required = 2.23 – 1.487 = 0.743 Ω
And capacitance \(C = \frac{1}{{2\pi\; \times \;50\; \times \;0.743}} = 4284.116\;\mu F\)