From the given state space representation,
\(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&{ - 2} \end{array}} \right]\)
\(\left[ {sI - A} \right] = s\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&{ - 2} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} s&{ - 1}\\ 1&{s + 2} \end{array}} \right]\)
\({\left[ {sI - A} \right]^{ - 1}} = \frac{1}{{s\left( {s + 2} \right) + 1}}\;\left[ {\begin{array}{*{20}{c}} {s + 2}&1\\ { - 1}&s \end{array}} \right] = \frac{1}{{{{\left( {s + 1} \right)}^2}}}\;\left[ {\begin{array}{*{20}{c}} {s + 2}&1\\ { - 1}&s \end{array}} \right]\)
\({e^{At}} = {L^{ - 1}}{\left[ {sI - A} \right]^{ - 1}} = {L^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\frac{{s + 2}}{{{{\left( {s + 1} \right)}^2}}}}&{\frac{1}{{{{\left( {s + 1} \right)}^2}}}}\\ {\frac{{ - 1}}{{{{\left( {s + 1} \right)}^2}}}}&{\frac{s}{{{{\left( {s + 1} \right)}^2}}}} \end{array}} \right]\)
\(= {L^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\frac{1}{{s + 1}} + \frac{1}{{{{\left( {s + 1} \right)}^2}}}}&{\frac{1}{{{{\left( {s + 1} \right)}^2}}}}\\ {\frac{{ - 1}}{{{{\left( {s + 1} \right)}^2}}}}&{\frac{1}{{{{\left( {s + 1} \right)}^2}}} - \frac{1}{{{{\left( {s + 1} \right)}^2}}}} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} {{e^{ - t}} + t{e^{ - t}}}&{t{e^{ - t}}}\\ { - t{e^{ - t}}}&{{e^{ - t}} - t{e^{ - t}}} \end{array}} \right]\)
\(x\left( t \right) = {e^{At}}\;x\left( 0 \right)\)
Get latest Exam Updates
& Study Material Alerts!
Click on Allow to receive notifications
To enable notifications follow this 2 steps:
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!