Self Studies
Selfstudy
Selfstudy

Signals and Systems Test 2

Result Self Studies

Signals and Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Fourier series coefficient of signal x(t) is c, then the Fourier series coefficient of the signal x(0.5t) + x(t – 0.5) + x(2t) will be:
    Solution

    Time scaling will not effect the Fourier series coefficient

    x (0.5t) → Ck

    \(x\left( {t - 0.5} \right) \to {e^{ - j{\omega _0}0.5k}}{C_k}\)

    x (2t) → Ck

    ∴ Fourier series coefficient of the given signal is

    \({C_k}\left( {1 + {e^{ - j{\omega _0}0.5k}}} \right) + {C_k}\)
  • Question 2
    1 / -0
    What is the exponential Fourier series coefficient of x(t) = cos2 8t + sin2 4t
    Solution

    x(t) = cos2 8t + sin2 4t

    \(= \frac{{1 + \cos 16t}}{2} + \frac{{1 - \cos 8t}}{2}\) 

    \({\cos ^2}t = \frac{{1 + \cos 2t}}{2}\) 

    \({\sin ^2}t = \frac{{1 - \cos 2t}}{2}\) 

    \(x\left( t \right) = 1 + \frac{1}{2}\cos 16t - \frac{1}{2}\cos 8t\) 

    Where ω1 = 16, ω 2 = 8

    \({T_1} = \frac{{2\pi }}{{{{\rm{\omega }}_1}}} = \frac{{2\pi }}{{16}} = \frac{\pi }{8}\) 

    \({T_2} = \frac{{2\pi }}{{{{\rm{\omega }}_2}}} = \frac{{2\pi }}{8} = \frac{\pi }{4}\) 

    T = π / 4

    \({\omega _0} = \frac{{2\pi }}{T} = \frac{{2\pi }}{\pi } \times 4\) 

    ω0 = 8 rad / sec

    \(x\left( t \right) = 1 + \frac{1}{2}\cos 16t - \frac{1}{2}\cos 8t\) 

    \(= 1 + \frac{1}{2}\cos 2{\omega _0}t - \frac{1}{2}\cos {\omega _0}t\) 

    \(= 1 + \frac{1}{2}\left( {\frac{{{e^{j2{{\rm{\omega }}_0}t}} + {e^{ - j2{\omega _0}t}}}}{2}} \right) - \frac{1}{2}\left( {\frac{{{e^{j{\omega _0}t}} + {e^{ - j{\omega _0}t}}}}{2}} \right)\) 

    \(x\left( t \right) = 1 + \frac{1}{4}{e^{j2{\omega _0}t}} + \frac{1}{4}{e^{ - j2{{\rm{\omega }}_0}t}} - \frac{1}{4}{e^{j{\omega _0}t}} - \frac{1}{4}{e^{ - j{{\rm{\omega }}_0}t}}\) 

    ∵ C0 = 1; C2 = 1 / 4; C1 = -1 / 4

    C-2 = 1 / 4; C-1 = -1 / 4

  • Question 3
    1 / -0

    Consider a real-valued function f(t) such that \(f\left( t+2\pi \right)=f\left( t \right)\) for all t ≥ 0. Such a signal f(t) can be represented as

    \(f\left( t \right)=\frac{{{a}_{0}}}{2}+\underset{n=1}{\overset{\infty }{\mathop \sum }}\,\left[ {{a}_{n}}\cos \left( nt \right)+{{b}_{n}}\sin \left( nt \right) \right]\)

    If f(t) = cos (3t) + sin (4t), then the coefficient a4 in the summation series, as indicated above is

    Solution

    f(t) = cos (3t) + sin (4t) = a3 cos (3t) + b4 sin (4t)

    Fourth harmonic is only present in an odd component of the signal i.e. sin (4t)

    ⇒ b4 = 1

    Third harmonic is only present in even component of the signal i.e. cos (3t)

    ⇒ a3 = 1

    Component of fourth harmonic is absent in the even component of the signal a4cos (3t)

    ⇒ a4 = 0

    Except for a3 and b4, all the harmonic components are zero.
  • Question 4
    1 / -0
    For the given Fourier series co-efficient x[k] = j δ [k - 1] – j δ [k + 1] + δ [k - 3] + δ [k + 3] and ω0 = 4π, find the time domain signal.
    Solution

    x[k] = j δ[k - 1] – j δ [k + 1] + δ [k - 3] + δ [k + 3], ω0 = 4π

    \(x\left( t \right) = j{e^{j\left( 1 \right)4\pi t}}-{e^{j\left( { - 1} \right)4\pi t}} + {e^{j\left( 3 \right)4\pi t}} + {e^{j\left( { - 3} \right)4\pi t}}\)

    = -2 sin (4 πt) + 2 cos (12 πt)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now