Self Studies

Signals and Systems Test 3

Result Self Studies

Signals and Systems Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider a causal LTI system with frequency response \(H\left( {j\omega } \right) = \frac{1}{{j\omega + 2}}\), for a particular input x(t), this system is observed to produce the output y(t) = (e-2t - e-4t) u(t). Determine x(t)
    Solution

    \(H\left( {j\omega } \right) = \frac{1}{{j\omega + 2}}\) 

    Output, \(y\left( t \right) = \left( {{e^{ - 2t}} - {e^{ - 4t}}} \right)u\left( t \right)\)

    By applying the Fourier transform,

    \(Y\left( \omega \right) = \frac{1}{{j\omega + 2}} - \frac{1}{{j\omega + 4}} = \frac{{j\omega + 4 - j\omega - 2}}{{\left( {j\omega + 2} \right)\left( {j\omega + 4} \right)}}\) 

    \(= \frac{2}{{\left( {j\omega + 2} \right)\left( {j\omega + 4} \right)}}\) 

    We know Y(ω) = X(ω) H(ω)

    \(X\left( \omega \right) = \frac{{Y\left( \omega \right)}}{{H\left( \omega \right)}} = \frac{{\frac{2}{{\left( {j\omega + 2} \right)\left( {j\omega + 4} \right)}}}}{{1/\left( {j\omega + 2} \right)}}\) 

    \(= \frac{2}{{j\omega + 4}} = 2{e^{ - 4t}}u\left( t \right)\) 

  • Question 2
    1 / -0
    What is the Fourier transform of x(t) = e-2|t| sgn(t)
    Solution

    Given that, x(t) = e-2|t| sgn(t)

    \(sgn\left( t \right) = \begin{array}{*{20}{c}}{1,\;t > 0}\\{ - 1,\;t < 0}\end{array}\)

    x(t) = e-2t t > 0

    = -e-2t t < 0

    \(x\left( t \right) = {e^{ - 2t}}u\left( t \right) - {e^{ - 2t}}\;u\left( { - t} \right)\)

    By applying Fourier transform,

    \(X\left( \omega \right) = \frac{1}{{2 + j\omega }} - \frac{1}{{2 - j\omega }}\)

    \(X\left( \omega \right) = \frac{{ - j2\omega }}{{{\omega ^2} + 4}}\) 

  • Question 3
    1 / -0
    The percentage of total energy in signal \(f\left( t \right) = {e^{ - t}}u\left( t \right)\) is contained in frequency band |ω| < 5 rad/sec is ______
    Solution

    Step 1:

    f(t) = e-t u(t)

    \({E_f}\left( t \right) = \mathop \smallint \limits_{ - \infty }^\infty {\left| {f\left( t \right)} \right|^2}dt = \mathop \smallint \limits_0^\infty {\left( {{e^{ - t}}} \right)^2}dt\)

    \(= \frac{1}{2} = 0.5\)

    \({E_f}\left( \omega \right)\;for\;\left| \omega \right| \le 5 = \frac{1}{{2\pi }}\;\mathop \smallint \limits_{ - 5}^5 \frac{1}{{1 + {\omega ^2}}}d\omega \)

    \( = \frac{1}{{2\pi }}\left( {{{\tan }^{ - 1}}\omega } \right)_{ - 5}^5 = \frac{2}{{2\pi }}\left( {{{\tan }^{ - 1}}\omega } \right)_0^5\)

    \( = \frac{1}{\pi }\left( {{{\tan }^{ - 1}}5 - {{\tan }^{ - 1}}0} \right)\)

    \(= \frac{{1.37}}{\pi } = 0.437\)

    Percentage of energy contained \( = \frac{{0.437}}{{0.5}} \times 100\) 

    = 87.433%

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now