Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    Which of the following vector function is solenoidal?

  • Question 2
    1 / -0

    If \(\vec F = \left( {{x^2}y + 3z} \right)\hat i + \left( {x{z^3} - 2y} \right)\hat j + {x^2}z\hat k.\) Then the value of grad(div \(\vec F\)) at the point (1, 2, 3) is

  • Question 3
    1 / -0

    Consider a function f(x, y, z) given by f(x, y, z) = (4x3y – 3y2x2 + 4z) ln y. The value of fy \((\frac{\partial f}{\partial y})\)at point x = 2, y = 1, z = 2 is

  • Question 4
    1 / -0

    If \(u = \ln \left( {\frac{{{x^3} + {y^3}}}{{x + y}}} \right)\), then find the value of \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\) ________?

  • Question 5
    1 / -0

    Let \(\vec u = - x\hat i + y\hat j + z\hat k\) and \(\vec v = y{z^2}\hat i + x{z^2}\hat j + 2xyz\hat k\). If \(\vec u\;and\;\vec v\) are irrotational vectors satisfying the condition \(\vec \nabla \cdot \left( {\vec u \times \vec v} \right) + f\left( {x,y,z} \right) + \vec u \cdot \vec v = 0,\) then f(x, y, z) is equal to

  • Question 6
    1 / -0

    If u = x log xy where \({x^3} + {y^3} + 3xy = 1,\) find du/dx

  • Question 7
    1 / -0

    The directional derivative of ϕ = x2yz + 4 xz2 at (1, -2, -1) in the direction 2î - ĵ - 2k [upto 2 decimals]

  • Question 8
    1 / -0

    The vector \(\vec V = \left( {x + y + az} \right)i + \left( {bx + 2y - z} \right)j + + \left( { - x + cy + 2z} \right)k\) is irrotational. Where a, b and c are constants. Find the divergence of the vector \(\vec V\).

  • Question 9
    1 / -0

    Match the following:

    A.

    If \(u\; = \;\frac{{{x^2}y}}{{x + y}}\) then \(x\frac{{{\partial ^2}u}}{{\partial {x^2}}} + y\frac{{{\partial ^{2u}}}}{{\partial x\partial y}}\)

    1.

    \(\frac{{ - 3}}{{16}}u\)

    B.

    If \(u\; = \;\frac{{\sqrt x - \sqrt y }}{{{x^{\frac{1}{4}}} + {y^{\frac{1}{4}}}}}\) then \({x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\)

    2.

    \(\frac{{\partial u}}{{\partial x}}\)

    C.

    If \(u\; = \;{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}\) then \({x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\;\)

    3.

    0

    D.

    If \(u\; = \;f\left( {\frac{y}{x}} \right)\) then \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\)

    4.

    \(- \frac{1}{4}u\)

  • Question 10
    1 / -0

    The potential function for the vector field \(\vec F = \left( {4xy + {y^2}z} \right)\hat i + \left( {2{x^2} + 2xyz + {z^2}} \right)\hat j + \left( {x{y^2} + 2yz} \right)\hat k\) is given by

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now