If ϕ(x, y, z) is a potential function, then the vector field is given by
\(\vec F = grad\;\phi = \frac{{\partial \phi }}{{\partial x}}\hat i + \frac{{\partial \phi }}{{\partial y}}\hat j + \frac{{\partial \phi }}{{\partial z}}\hat k\)
Given vector field is,
\(\vec F = \left( {4xy + {y^2}z} \right)\hat i + \left( {2{x^2} + 2xyz + {z^2}} \right)\hat j + \left( {x{y^2} + 2yz} \right)\hat k\)
\(\frac{{\partial \phi }}{{\partial x}} = 4xy + {y^2}z,\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + {z^2},\frac{\partial }{{\partial z}} = x{y^2} + 2yz\)
Consider \(\frac{{\partial \phi }}{{\partial x}} = 4xy + {y^2}z\)
By integrating w.r.t ‘x’
\(\Rightarrow \phi = \frac{{4{x^2}y}}{2} + x{y^2}z + u\left( {y,z} \right)\)
⇒ ϕ (x, y, z) = 2x2y + xy2z + u(y, z)
By differentiating w.r.t ‘y’
\(\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + \frac{{\partial u}}{{\partial y}}\)
We know that,
\(\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + {z^2}\)
\(\Rightarrow \frac{{\partial u}}{{\partial y}}\left( {y,z} \right) = {z^2}\)
By integrating w.r.t ‘y’
⇒ u = z2y + v(z)
Now, ϕ (x, y, z) = 2x2y + xy2z + z2y + v(x)
By differentiating w.r.t ‘z’
\(\frac{{\partial \phi }}{{\partial z}} = x{y^2} + 2yz + \frac{{\partial v}}{{\partial z}}\)
We know that,
\(\frac{{\partial \phi }}{{\partial z}} = x{y^2} + 2yz\)
\( \Rightarrow \frac{{\partial v}}{{\partial z}} = 0\)
⇒ v = constant
Now, the potential function becomes
ϕ (x, y, z) = 2x2y + xy2z + z2y + c