Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 4

Result Self Studies

Engineering Mathematics Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following vector function is solenoidal?
    Solution

    1. \({\vec F_1} = \left( {x + y} \right)\hat i + \left( {2y - 3z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_1} = 1 + 2 - 4 = - 1 \ne 0\) 

    Therefore, \({\vec F_1}\) is not solenoidal.

    2. \({\vec F_2} = \left( {x - y} \right)\hat i + \left( {2y - z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_2} = 1 + 2 - 4 = - 1 \ne 0\) 

    Therefore, \({\vec F_2}\) is not solenoidal.

    3. \({\vec F_3} = \left( {2x - y} \right)\hat i + \left( {y - 3z} \right)\hat j + \left( {3x + 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_3} = 2 + 1 + 4 = 8 \ne 0\) 

    Therefore, \({\vec F_3}\) is not solenoidal.

    4. \({\vec F_4} = \left( {2x + y} \right)\hat i + \left( {2y - 3z} \right)\hat j + \left( {3x - 4z} \right)\hat k\) 

    \(\nabla \cdot {\vec F_4} = 2 + 2 - 4 = 0\) 

    Therefore, \({\vec F_4}\) is solenoidal.

  • Question 2
    1 / -0
    If \(\vec F = \left( {{x^2}y + 3z} \right)\hat i + \left( {x{z^3} - 2y} \right)\hat j + {x^2}z\hat k.\) Then the value of grad(div \(\vec F\)) at the point (1, 2, 3) is
    Solution

    Concept:

    For a vector field, V defined as Vî + Vĵ + Vz k̂, the divergence (∇.V) is given by:

    \(∇.V= \left( {\frac{\partial }{{\partial x}}\hat i + \frac{\partial }{{\partial y}}\hat j + \frac{\partial }{{\partial z}} \hat k} \right).\left( {V_x \hat i + V_y \hat j + V_z \hat k} \right)\)

    \(∇.V=\frac{\partial V_x }{\partial x}+\frac{\partial V_y }{\partial y}+\frac{\partial V_z }{\partial z}\)

    Also, for a Scalar function A, the gradient is defined as:

    \(\nabla A = \frac{{\partial {A_x}}}{{\partial x}}{a_x} + \frac{{\partial {A_y}}}{{\partial y}}{a_y} + \frac{{\partial {A_z}}}{{\partial z}}{a_z}\)

    Calculation:

    For the given vector field \(\vec F\):

    \(div\;\vec F = \nabla \cdot \vec F = 2xy - 2 + {x^2}\)

    \(grad\left( {div\;\vec F} \right) = \left( {2x + 2y} \right)\hat i + \left( {2x} \right)\hat j\)

    At given point (1, 2, 3)

    \(grad\left( {div\;\vec F} \right) = 6\hat i + 2\hat j\)

  • Question 3
    1 / -0
    Consider a function f(x, y, z) given by f(x, y, z) = (4x3y – 3y2x2 + 4z) ln y. The value of fy \((\frac{\partial f}{\partial y})\)at point x = 2, y = 1, z = 2 is
    Solution

    f(x, y, z) = (4x3y – 3y2z2 + 4z) lny

    \(fy = \frac{{\partial f}}{{\partial y}} = \left( {4{x^3} - 6y{z^2}} \right)\ln y + \left( {4{x^3}y - 3{y^2}{z^2} + 4z} \right)\frac{1}{y}\)

    At point x = 2, y = 1, z = 2

    fy = 0 + (4(8)(1) - 3(4)(1) + 4(2))

    = 28

  • Question 4
    1 / -0
    If \(u = \ln \left( {\frac{{{x^3} + {y^3}}}{{x + y}}} \right)\), then find the value of \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\) ________?
    Solution

    Concept:

    If z is homogeneous function of x & y of degree n and z = f(u), then by Euler’s theorem:

    \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = n\frac{{f\left( u \right)}}{{f'\left( u \right)}}\)

    Given, \(u = \ln \left( {\frac{{{x^3} + {y^3}}}{{x + y}}} \right)\)

    \(z = \frac{{{x^3} + {y^3}}}{{x + y}}\)

    z is homogenous function of x & y with degree 2.

    Now, z = eu

    Thus, by Euler’s theorem:

    \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 2\frac{{{e^u}}}{{{e^u}}}\)

    \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 2\)

  • Question 5
    1 / -0
    Let \(\vec u = - x\hat i + y\hat j + z\hat k\) and \(\vec v = y{z^2}\hat i + x{z^2}\hat j + 2xyz\hat k\). If \(\vec u\;and\;\vec v\) are irrotational vectors satisfying the condition \(\vec \nabla \cdot \left( {\vec u \times \vec v} \right) + f\left( {x,y,z} \right) + \vec u \cdot \vec v = 0,\) then f(x, y, z) is equal to
    Solution

    Let \(\vec u = - x\hat i + y\hat j + z\hat k\)

    \(\vec v = y{z^2}\hat i + x{z^2}\hat j + 2xyz\hat k\)

    \(\vec u \times \vec v = \left| {\begin{array}{*{20}{c}} i&j&k\\ { - x}&y&z\\ {y{z^2}}&{x{z^2}}&{2xyz} \end{array}} \right|\)

    \( = \hat i\left( {2x{y^2}z - x{z^3}} \right) - \hat j\left( { - 2{x^2}yz - y{z^3}} \right) + \hat k\left( { - {x^2}{z^2} - {y^2}{z^2}} \right)\)

    \(= \left( {2x{y^2}z - x{z^3}} \right)\hat i + \left( {2{x^2}yz + y{z^3}} \right)\hat j - \left( {{x^2}{z^2} + {y^2}{z^2}} \right)\hat k\)

    \(\vec \nabla \cdot \left( {\vec u \times \vec v} \right) = 2{y^2}z - {z^3} + 2{x^2}z + {z^3} - 2{x^2}z - 2{y^2}z = 0\)

    \(\vec u \cdot \vec v = \left( { - x\hat i + y\hat j + z\hat k} \right) \cdot \left( {y{z^2}\hat i + x{z^2}\hat j + 2xyz\hat k} \right)\)

    = -xyz2 + xyz2 + 2xyz2

    = 2xyz2

    f(x, y, z) = -2xyz2

  • Question 6
    1 / -0
    If u = x log xy where \({x^3} + {y^3} + 3xy = 1,\) find du/dx
    Solution

    F(x, y) = x3 + y3 + 3xy – 1

    \(\begin{array}{l}\frac{{dy}}{{dx}} = \frac{{\frac{{ - \partial f}}{{\partial x}}}}{{\frac{{\partial f}}{{\partial y}}}} = \frac{{ - 3{x^2} + 3y}}{{3{y^2} + 3x}} = - \frac{{{x^2} + y}}{{{y^2} + x}}\\\frac{{du}}{{dx}} = \frac{{\partial u}}{{\partial x}} + \frac{{\partial u}}{{\partial y}}.\frac{{dy}}{{dx}} = \left( {1.\log xy + x.\frac{1}{x}} \right) + \left( {\frac{x}{y}} \right).\frac{{dy}}{{dx}}\\ \Rightarrow \frac{{du}}{{dx}} = 1 + \log xy - \frac{x}{y}\frac{{\left( {{x^2} + y} \right)}}{{\left( {{y^2} + x} \right)}}\end{array}\)
  • Question 7
    1 / -0
    The directional derivative of ϕ = x2yz + 4 xz2 at (1, -2, -1) in the direction 2î - ĵ - 2k [upto 2 decimals]
    Solution

    Explanation:

    Gradient of scalar gives the vector

    ∇ϕ = ∇(x2yz + 4xz2)

    = (2xyz + 4z2) î + x2zĵ + (x2y + 8xz) k̂

    At, (1, -2, -1)

    = 8 î - ĵ - 10 k̂

    Unit vector in the direction of 2c – ĵ - 2k̂ is

    \(a = \frac{{2\hat i - \hat j - 2\hat k}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{2}{3}\hat i - \frac{1}{3}\hat j\frac{{ - 2}}{3}\hat k\)

    Required directional derivative.

    \(\frac{{\nabla\phi }}{{\left| {\nabla\phi } \right|}}.\hat a\)

    \(= \left( {8\;\hat i - \hat j - 10\;\hat k} \right)\left( {\frac{2}{3}\hat i - \frac{1}{3}\hat j\frac{{ - 2}}{3}\hat k} \right)\)

    \(= \frac{{16}}{3} + \frac{1}{3} + \frac{{20}}{3} = \frac{{37}}{3} = 12.33\)

  • Question 8
    1 / -0
    The vector \(\vec V = \left( {x + y + az} \right)i + \left( {bx + 2y - z} \right)j + + \left( { - x + cy + 2z} \right)k\) is irrotational. Where a, b and c are constants. Find the divergence of the vector \(\vec V\).
    Solution

    Concept:

    A vector F is said to be solenoidal when ∇. F = 0

    A vector F is said to be irrotational when ∇ × F = 0

    Calculation:

    \(\vec V = \left( {x + y + az} \right)i + \left( {bx + 2y - z} \right)j + + \left( { - x + cy + 2z} \right)k\)

    \(\nabla \times \vec V = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {\left( {x + y + az} \right)}&{\left( {bx + 2y - z} \right)}&{\left( { - x + cy + 2z} \right)} \end{array}} \right| = 0\)

    ⇒ i (c + 1) – j (-1 – a) + k (b – 1) = 0

    ⇒ a = -1, b = 1, and c = -1

    \(\vec V = \left( {x + y - z} \right)i + \left( {x + 2y - z} \right)j + \left( { - x - y + 2z} \right)k\)

    Divergence of the given vector is

    \(div\;\vec V = \nabla .\vec V = \frac{\partial }{{\partial x}}\left( {x + y - z} \right) + \frac{\partial }{{\partial y}}\left( {x + 2y - z} \right) + \frac{\partial }{{\partial z}}\left( { - x - y + 2z} \right)\)

    = 1 + 2 + 2 = 5
  • Question 9
    1 / -0

    Match the following:

    A.

    If \(u\; = \;\frac{{{x^2}y}}{{x + y}}\) then \(x\frac{{{\partial ^2}u}}{{\partial {x^2}}} + y\frac{{{\partial ^{2u}}}}{{\partial x\partial y}}\)

    1.

    \(\frac{{ - 3}}{{16}}u\)

    B.

    If \(u\; = \;\frac{{\sqrt x - \sqrt y }}{{{x^{\frac{1}{4}}} + {y^{\frac{1}{4}}}}}\) then \({x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\)

    2.

    \(\frac{{\partial u}}{{\partial x}}\)

    C.

    If \(u\; = \;{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}\) then \({x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\;\)

    3.

    0

    D.

    If \(u\; = \;f\left( {\frac{y}{x}} \right)\) then \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\)

    4.

    \(- \frac{1}{4}u\)

    Solution

    A) \(u\; = \;\frac{{{x^2}y}}{{x + y}}\)

    It is a homogeneous function of degree 2.

    By Euler’s theorem, \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\; = \;nu\)

    Differentiating partially w.r.t. x, we get

    \(\begin{array}{l} x\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{\partial u}}{{\partial x}} + y\frac{{{\partial ^2}u}}{{\partial y\partial x}}\; = \;n\frac{{\partial u}}{{\partial x}}\;\\ \Rightarrow \;x\frac{{{\partial ^2}u}}{{\partial {x^2}}} + y\frac{{{\partial ^2}u}}{{\partial y\partial x}}\; = \;\left( {n - 1} \right)\frac{{\partial u}}{{\partial x}}\\ x\frac{{{d^2}u}}{{\partial {x^2}}} + y\frac{{{\partial ^2}u}}{{\partial x\partial y}}\; = \;\left( {n - 1} \right)\frac{{\partial u}}{{\partial x}}\; = \;\left( {2 - 1} \right)\frac{{\partial u}}{{\partial x}}\; = \;\frac{{\partial u}}{{\partial x}} \end{array}\)

    B) \(u\; = \;\frac{{\sqrt x - \sqrt y }}{{{x^{\frac{1}{4}}} + {y^{\frac{1}{4}}}}}\)

    It is a homogenous function of degree \(\left( {\frac{1}{2} - \frac{1}{4}} \right)\; = \;\frac{1}{4}\)

    \(\begin{array}{l} {x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\;\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\; = \;n\left( {n - 1} \right)u\\ = \;\frac{1}{4}\left( {\frac{1}{4} - 1} \right)\; = \;\frac{{ - 3}}{{16}}u \end{array}\)

    C) \(u\; = \;{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}\)

    It is a homogeneous function of degree ½

    \(\begin{array}{l} {x^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2xy\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {y^2}\frac{{{\partial ^2}u}}{{\partial {y^2}}}\; = \;n\left( {n - 1} \right)u\\ = \;\frac{1}{2}\left( {\frac{1}{2} - 1} \right)u\; = \; - \frac{1}{4}u \end{array}\)

    D) u = f (y/x)

    It is a homogeneous function of degree zero.

    \(\Rightarrow \;x\frac{{\partial u}}{{\partial x\;}} + y\frac{{\partial y}}{{\partial y}}\; = \;nu\; = \;0\)

  • Question 10
    1 / -0
    The potential function for the vector field \(\vec F = \left( {4xy + {y^2}z} \right)\hat i + \left( {2{x^2} + 2xyz + {z^2}} \right)\hat j + \left( {x{y^2} + 2yz} \right)\hat k\) is given by
    Solution

    If ϕ(x, y, z) is a potential function, then the vector field is given by

    \(\vec F = grad\;\phi = \frac{{\partial \phi }}{{\partial x}}\hat i + \frac{{\partial \phi }}{{\partial y}}\hat j + \frac{{\partial \phi }}{{\partial z}}\hat k\) 

    Given vector field is,

    \(\vec F = \left( {4xy + {y^2}z} \right)\hat i + \left( {2{x^2} + 2xyz + {z^2}} \right)\hat j + \left( {x{y^2} + 2yz} \right)\hat k\) 

    \(\frac{{\partial \phi }}{{\partial x}} = 4xy + {y^2}z,\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + {z^2},\frac{\partial }{{\partial z}} = x{y^2} + 2yz\) 

    Consider \(\frac{{\partial \phi }}{{\partial x}} = 4xy + {y^2}z\) 

    By integrating w.r.t ‘x’

    \(\Rightarrow \phi = \frac{{4{x^2}y}}{2} + x{y^2}z + u\left( {y,z} \right)\) 

    ⇒ ϕ (x, y, z) = 2x2y + xy2z + u(y, z)

    By differentiating w.r.t ‘y’

    \(\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + \frac{{\partial u}}{{\partial y}}\) 

    We know that,

    \(\frac{{\partial \phi }}{{\partial y}} = 2{x^2} + 2xyz + {z^2}\) 

    \(\Rightarrow \frac{{\partial u}}{{\partial y}}\left( {y,z} \right) = {z^2}\) 

    By integrating w.r.t ‘y’

    ⇒ u = z2y + v(z)

    Now, ϕ (x, y, z) = 2x2y + xy2z + z2y + v(x)

    By differentiating w.r.t ‘z’

    \(\frac{{\partial \phi }}{{\partial z}} = x{y^2} + 2yz + \frac{{\partial v}}{{\partial z}}\) 

    We know that,

    \(\frac{{\partial \phi }}{{\partial z}} = x{y^2} + 2yz\) 

    \( \Rightarrow \frac{{\partial v}}{{\partial z}} = 0\) 

    ⇒ v = constant

    Now, the potential function becomes

    ϕ (x, y, z) = 2x2y + xy2z + z2y + c

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now