Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    If C is the path along the curve y = x2 – 4x + 4 from (0, 4) to (2, 0), then \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) is

  • Question 2
    1 / -0

    Let C be the curve, which is the union of two line segments, the first going from (0, 0) to (3, 4) and the second segment going from (3, 4) to (6, 0). Compute the integral \(\mathop \smallint \nolimits_C \left( {3dy - 4dx} \right)\)

  • Question 3
    1 / -0

    The value of the integral

    \(\mathop \oint \nolimits_s \vec r.\vec n\;ds\)

    over the closed surface S bounding a volume V, where \(\vec r = x i + y j + z k\) is the position vector and n̂ is normal to the surface S, is

  • Question 4
    1 / -0

    Suppose C is any curve from (0, 0, 0) to (1, 1, 1) and \(\vec F\left( {x,\;y,\;z} \right) = \left( {4z + 5y} \right)\hat i + \left( {3z + 5x} \right)\hat j + \left( {3y + 4x} \right)\hat k\). Compute the line integral \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \)

  • Question 5
    1 / -0

     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.

  • Question 6
    1 / -0

    The volume of the region below z = 4 – xy and above the region in the xy-plane defined by 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 is _______

  • Question 7
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

  • Question 8
    1 / -0

    If S is the surface of the sphere x2 + y2 + z2 = a2, then the value of

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now