Self Studies

Engineering Mathematics Test 5

Result Self Studies

Engineering Mathematics Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If C is the path along the curve y = x2 – 4x + 4 from (0, 4) to (2, 0), then \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) is
    Solution

    y = x2 – 4x + 4

    dy = 2x dx – 4 dx = (2x - 4) dx

    \(\overrightarrow {dr} = dx\;\hat i + dy\;\hat j\) 

    \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \left( {dx\;\hat i + dy\;\hat j} \right)\) 

    \( = \mathop \oint \nolimits_C ydx - 3x\;dy\) 

    \( = \mathop \oint \nolimits_C \left( {{x^2} - 4x + 4} \right)dx - 3x\left( {2x - 4} \right)dx\) 

    \( = \mathop \oint \nolimits_C \left( { - 5{x^2} + 8x + 4} \right)dx\) 

    \(\mathop \smallint \limits_{x = 0}^2 \left( { - 5{x^2} + 8x + 4} \right)dx\) 

    \( = \left[ {\frac{{ - 5{x^3}}}{3} + 4{x^2} + 4x} \right]_0^2\) 

    \( = \frac{{ - 5}}{3}\left( 8 \right) + 4\left( 4 \right) + 4\left( 2 \right)\) 

    \(\frac{{ - 40}}{3} + 24 = \frac{{32}}{3}\)

  • Question 2
    1 / -0
    Let C be the curve, which is the union of two line segments, the first going from (0, 0) to (3, 4) and the second segment going from (3, 4) to (6, 0). Compute the integral \(\mathop \smallint \nolimits_C \left( {3dy - 4dx} \right)\)
    Solution

    First line segment: (0, 0) → (3, 4)

    Second line segment: (3, 4) → (6, 0)

    Now, the line integral becomes

    \(\mathop \smallint \nolimits_C \left( {3dy - 4dx} \right)\;\) 

    \( = \mathop \smallint \limits_{\left( {0,\;0} \right)}^{\left( {6,\;0} \right)} \left( { - 4dx + 3dy} \right)\) 

    \( = \left[ {\frac{{ - 4x}}{2} + 3y} \right]_{\left( {0,\;0} \right)}^{\left( {6,\;0} \right)}\) 

    = -4(6) + 3(0)

    = -24
  • Question 3
    1 / -0

    The value of the integral

    \(\mathop \oint \nolimits_s \vec r.\vec n\;ds\)

    over the closed surface S bounding a volume V, where \(\vec r = x i + y j + z k\) is the position vector and n̂ is normal to the surface S, is
    Solution

    Concept:

    According to Gauss Divergence theorem:

    \(\oint A.ds=\iiint{\left( \nabla .A \right)dv}\)

    \(\oint \overrightarrow{F.}\hat{n}ds=\iiint{\left( \nabla .F \right)dv}\)

    Calculation:

    Given that S is a closed surface:

    \(\oint \overrightarrow{r.}\hat{n}ds=\iiint{\left( \nabla .r \right)dv}\)

    \(\vec r = x\hat i + y\hat j + z\hat k\)

    \(\nabla .r = \frac{\partial }{{\partial x}}\left( x \right) + \frac{\partial }{{\partial y}}\left( y \right) + \frac{\partial }{{\partial z}}\left( z \right) = 3\)

    \(\oint \overrightarrow{r.}\hat{n}ds=\iiint{\left( \nabla .r \right)dv}=\iiint{3dv=3V}\)

  • Question 4
    1 / -0
    Suppose C is any curve from (0, 0, 0) to (1, 1, 1) and \(\vec F\left( {x,\;y,\;z} \right) = \left( {4z + 5y} \right)\hat i + \left( {3z + 5x} \right)\hat j + \left( {3y + 4x} \right)\hat k\). Compute the line integral \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \)
    Solution

    \(\vec F\left( {x,\;y,\;z} \right) = \left( {4z + 5y} \right)\hat i + \left( {3z + 5x} \right)\hat j + \left( {3y + 4x} \right)\hat k\)

    \(\overrightarrow {dr} = dr\;\hat i + dy\;\hat j + dz\;\hat k\)

    \(\vec F \cdot \overrightarrow {dr} = \left( {4x + 5y} \right)dx + \left( {3z + 5x} \right)dy + \left( {3y + 4x} \right)dz\)

    \(\frac{{x - 0}}{{1 - 0}} = \frac{{y - 0}}{{1 - 0}} = \frac{{z - 0}}{{1 - 0}} = t\)

    x = y = z = t

    dx = dy = dz = dt

    Limits of t are: 0 to 1

    \(\vec F \cdot \overrightarrow {dr} = 9t\;dt + 8t\;dt + 7t\;dt = 24t\;dt\)

    \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} = \mathop \smallint \limits_{t = 0}^1 24t\;dt = \left[ {24{t^2}} \right]_0^1 = 12\)

  • Question 5
    1 / -0
     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.
    Solution

    Concept:

    By stokes theorem,

    \(\mathop \oint \limits_C^\; F.dr = \mathop \int\!\!\!\int \limits_S^\; Curl\;F.Nds\)

    Calculation:

    \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\)

     

    \(\nabla \times \vec F = \left| {\begin{array}{*{20}{c}} i&j&k\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ x&y&{3\left( {{x^2} + {y^2}} \right)} \end{array}} \right|\)

    = i (6y) – j(6x) = 6y î - 6x ĵ

    S: x2 + y2 + z2 – 64 = 0

    \(ds = + 2x\hat i + 2y\hat j + 2z\hat k\)

    \(\left( {\nabla \times \vec F} \right) \cdot ds = \left( {6y\hat i - 6x\hat j} \right) \cdot \left( {2x\hat i + 2y\hat j + 2z\hat k} \right)\)

    = 12xy – 12xy + 0 = 0

    \( \Rightarrow \mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} = 0\)

  • Question 6
    1 / -0

    The volume of the region below z = 4 – xy and above the region in the xy-plane defined by 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 is _______

    Solution

    \(V = \iiint\limits_c {dv}\)

    0 ≤ z ≤ 4 - xy

    0 ≤ x ≤ 2

    0 ≤ y ≤ 1

    \(V = \iiint\limits_c {dv} = \mathop \smallint \limits_0^2 \mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{4 - xy} dzdxdy\)

    \(V = \mathop \smallint \limits_0^2 \mathop \smallint \limits_0^1 z\left. \right|_0^{4 - xy}dydx\)

    \(V = \mathop \smallint \limits_0^2 \mathop \smallint \limits_0^1 \left( {4 - xy} \right)dydx\)

    \(V = \mathop \smallint \limits_0^2 \left. {\left( {4y - \frac{1}{2}x{y^2}} \right)} \right|_0^1dx\)

    \( = \mathop \smallint \limits_0^2 4 - \frac{1}{2}xdx\;\)

    \( \Rightarrow \left( {4x - \frac{1}{4}{x^2}} \right)_0^2 = 7\)

  • Question 7
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

    Solution

    Explanation:

    Cut open the surface S by any plane and Let S1, S2 denotes its upper and lower portions.

    Let C be the common curve bounding both these portions.

    \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_{{S_1}}^\; Curl\;\vec F. \vec ds + \mathop \smallint \limits_{{S_2}}^\; Curl\;\vec F.\vec ds\)

    By stokes theorem,

    \(\begin{array}{l} \mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_C^\; \vec F.\vec dr\\ \Rightarrow \mathop \smallint \limits_S^\; Curl\;\vec F.\vec ds = \mathop \smallint \limits_C^\; \vec F.\vec dr - \mathop \smallint \limits_C^\; \vec F.\vec dr = 0 \end{array}\)

    The second integral is negative because it is traversed in a direction opposite to that of the first.

  • Question 8
    1 / -0

    If S is the surface of the sphere x2 + y2 + z2 = a2, then the value of

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) is
    Solution

    From Gauss divergence theorem,

    \(\mathop \iint \limits_S F.ds = \iiint\limits_V {\nabla .\overrightarrow F dV}\)

    \({\rm{\vec F}} = \left( {x + z} \right)i + \left( {y + z} \right)j + \left( {x + y} \right)k\)

    \(\nabla .{\rm{\vec F}} = 1 + 1 + 0 = 2\)

    \(\iiint\limits_{V}{\nabla .\overrightarrow{F}dV}=\iiint{2dV}\)

    \(2\iiint{dV}\)

    The volume of the sphere \(= \frac{4}{3}\pi {a^3}\)

    \(\Rightarrow \iiint\limits_{V}{\nabla .\overrightarrow{F}dV}=2\times \frac{4}{3}\pi {{a}^{3}}=\frac{8}{3}\pi {{a}^{3}}\)

    \(\Rightarrow \mathop \int\!\!\!\int \limits_S F.ds = \frac{8}{3}\pi {a^3}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now